<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name="generator" content="pandoc"> <meta name="author" content="Robin Dietrich & Marius Schwarz"> <title>CPA Angriff auf Speck</title> <meta name="apple-mobile-web-app-capable" content="yes"> <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui"> <link rel="stylesheet" href="./reveal.js/dist/reset.css"> <link rel="stylesheet" href="./reveal.js/dist/reveal.css"> <style> code{white-space: pre-wrap;} span.smallcaps{font-variant: small-caps;} span.underline{text-decoration: underline;} div.column{display: inline-block; vertical-align: top; width: 50%;} div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} ul.task-list{list-style: none;} pre > code.sourceCode { white-space: pre; position: relative; } pre > code.sourceCode > span { display: inline-block; line-height: 1.25; } pre > code.sourceCode > span:empty { height: 1.2em; } .sourceCode { overflow: visible; } code.sourceCode > span { color: inherit; text-decoration: inherit; } div.sourceCode { margin: 1em 0; } pre.sourceCode { margin: 0; } @media screen { div.sourceCode { overflow: auto; } } @media print { pre > code.sourceCode { white-space: pre-wrap; } pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; } } pre.numberSource code { counter-reset: source-line 0; } pre.numberSource code > span { position: relative; left: -4em; counter-increment: source-line; } pre.numberSource code > span > a:first-child::before { content: counter(source-line); position: relative; left: -1em; text-align: right; vertical-align: baseline; border: none; display: inline-block; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; padding: 0 4px; width: 4em; color: #aaaaaa; } pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } div.sourceCode { } @media screen { pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } } code span.al { color: #ff0000; font-weight: bold; } /* Alert */ code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ code span.at { color: #7d9029; } /* Attribute */ code span.bn { color: #40a070; } /* BaseN */ code span.bu { } /* BuiltIn */ code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ code span.ch { color: #4070a0; } /* Char */ code span.cn { color: #880000; } /* Constant */ code span.co { color: #60a0b0; font-style: italic; } /* Comment */ code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ code span.do { color: #ba2121; font-style: italic; } /* Documentation */ code span.dt { color: #902000; } /* DataType */ code span.dv { color: #40a070; } /* DecVal */ code span.er { color: #ff0000; font-weight: bold; } /* Error */ code span.ex { } /* Extension */ code span.fl { color: #40a070; } /* Float */ code span.fu { color: #06287e; } /* Function */ code span.im { } /* Import */ code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ code span.kw { color: #007020; font-weight: bold; } /* Keyword */ code span.op { color: #666666; } /* Operator */ code span.ot { color: #007020; } /* Other */ code span.pp { color: #bc7a00; } /* Preprocessor */ code span.sc { color: #4070a0; } /* SpecialChar */ code span.ss { color: #bb6688; } /* SpecialString */ code span.st { color: #4070a0; } /* String */ code span.va { color: #19177c; } /* Variable */ code span.vs { color: #4070a0; } /* VerbatimString */ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ .display.math{display: block; text-align: center; margin: 0.5rem auto;} </style> <link rel="stylesheet" href="./reveal.js/dist/theme/night.css" id="theme"> <link rel="stylesheet" href="./css/custom.css"/> </head> <body> <div class="reveal"> <div class="slides"> <section id="title-slide"> <h1 class="title">CPA Angriff auf Speck</h1> <p class="author">Robin Dietrich & Marius Schwarz</p> </section> <section id="agenda" class="slide level1"> <h1>Agenda</h1> <ul> <li>Speck Chiffre</li> <li>CPA Angriffe</li> <li>CPA auf Speck</li> <li>Gegenmaßnahmen</li> <li>Hiding</li> </ul> </section> <section id="speck" class="slide level1"> <h1>Speck</h1> <ul> <li>Symmentrische ARX Chiffre <ul> <li>Add/Rotate/XOR</li> <li>Effizient und einfach umzusetzen</li> </ul></li> <li>Entworfen von der NSA (Zusammen mit der Chiffre Simon)</li> <li>Performant in Hard-/Software</li> <li>Speck bietet mehrere mögliche Modis <ul> <li>Anzahl Runden, Schlüssellänge, Blocklänge</li> </ul></li> <li>Paper: <a href="https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf">Simon and Speck: Block Ciphers for the Internet of Things</a></li> </ul> </section> <section id="speck---setups" class="slide level1"> <h1>Speck - Setups</h1> <table> <thead> <tr class="header"> <th>Speck</th> <th>Blocklänge</th> <th>Schlüssellänge</th> <th>Runden</th> </tr> </thead> <tbody> <tr class="odd"> <td><span style="color:#d08a1d"><strong>Speck3264</strong></span></td> <td><span style="color:#d08a1d"><strong>32 Bit</strong></span></td> <td><span style="color:#d08a1d"><strong>64 Bit</strong></span></td> <td><span style="color:#d08a1d"><strong>22</strong></span></td> </tr> <tr class="even"> <td>Speck4872</td> <td>48 Bit</td> <td>72 Bit</td> <td>22</td> </tr> <tr class="odd"> <td>Speck4896</td> <td>48 Bit</td> <td>96 Bit</td> <td>23</td> </tr> <tr class="even"> <td>Speck6496</td> <td>64 Bit</td> <td>96 Bit</td> <td>26</td> </tr> <tr class="odd"> <td>Speck64128</td> <td>64 Bit</td> <td>128 Bit</td> <td>27</td> </tr> <tr class="even"> <td>Speck9696</td> <td>96 Bit</td> <td>96 Bit</td> <td>28</td> </tr> <tr class="odd"> <td>Speck96144</td> <td>96 Bit</td> <td>144 Bit</td> <td>29</td> </tr> <tr class="even"> <td>Speck128128</td> <td>128 Bit</td> <td>128 Bit</td> <td>32</td> </tr> <tr class="odd"> <td>Speck128192</td> <td>128 Bit</td> <td>192 Bit</td> <td>33</td> </tr> <tr class="even"> <td>Speck1281256</td> <td>128 Bit</td> <td>256 Bit</td> <td>34</td> </tr> </tbody> </table> </section> <section id="speck---rundenfunktion" class="slide level1"> <h1>Speck - Rundenfunktion</h1> <p><img data-src="img/rundenfunktion.png" width="400" /></p> <ul> <li>Wird für die Generierung des Rundenschlüssels aufgerufen</li> <li>Wird bei der Verschlüsselung des Klartextes aufgerufen</li> <li>Arbeitet auf zwei geteiltem Input</li> </ul> </section> <section id="speck---pseudocode" class="slide level1"> <h1>Speck - Pseudocode</h1> <div class="sourceCode" id="cb1"><pre class="sourceCode c"><code class="sourceCode c"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>pt <span class="op">=</span> Plaintext Bytes Pt <span class="op">=</span> Plaintext as <span class="dv">16</span> Bit Words</span> <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>ct <span class="op">=</span> Ciphertext Bytes Ct <span class="op">=</span> Ciphertext as <span class="dv">16</span> Bit Words</span> <span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>k <span class="op">=</span> Key as Bytes K <span class="op">=</span> Key as <span class="dv">16</span> Bit Words</span> <span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span> <span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="co">// Key Schedule</span></span> <span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>D<span class="op">=</span>K<span class="op">[</span><span class="dv">3</span><span class="op">],</span> C<span class="op">=</span>K<span class="op">[</span><span class="dv">2</span><span class="op">],</span> B<span class="op">=</span>K<span class="op">[</span><span class="dv">1</span><span class="op">],</span> A<span class="op">=</span>K<span class="op">[</span><span class="dv">0</span><span class="op">]</span></span> <span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span> <span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i in <span class="fl">0.</span><span class="er">.</span><span class="op"><</span><span class="dv">22</span></span> <span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a> rk<span class="op">[</span>i<span class="op">]=</span>A</span> <span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a> ER16<span class="op">(</span>B<span class="op">,</span> A<span class="op">,</span> i<span class="op">++)</span></span> <span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a> rk<span class="op">[</span>i<span class="op">]=</span>A</span> <span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> ER16<span class="op">(</span>C<span class="op">,</span> A<span class="op">,</span> i<span class="op">++)</span></span> <span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a> rk<span class="op">[</span>i<span class="op">]=</span>A</span> <span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a> ER16<span class="op">(</span>D<span class="op">,</span> A<span class="op">,</span> i<span class="op">++)</span></span> <span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a></span> <span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="co">// Encryption</span></span> <span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a>Ct<span class="op">[</span><span class="dv">0</span><span class="op">]=</span>Pt<span class="op">[</span><span class="dv">0</span><span class="op">];</span> Ct<span class="op">[</span><span class="dv">1</span><span class="op">]=</span>Pt<span class="op">[</span><span class="dv">1</span><span class="op">];</span></span> <span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a></span> <span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i in <span class="fl">0.</span><span class="er">.</span><span class="op"><</span><span class="dv">22</span></span> <span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a> ER16<span class="op">(</span>Ct<span class="op">[</span><span class="dv">1</span><span class="op">],</span> Ct<span class="op">[</span><span class="dv">0</span><span class="op">],</span> rk<span class="op">[</span>i<span class="op">++])</span></span></code></pre></div> </section> <section id="speck---möglicher-angriff" class="slide level1"> <h1>Speck - Möglicher Angriff</h1> <ul> <li>Angriff der Rundenfunktion</li> <li>ADD/XOR/ROT Operationen</li> </ul> <div class="sourceCode" id="cb2"><pre class="sourceCode c"><code class="sourceCode c"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="dt">void</span> FuncER16<span class="op">(</span>u16 <span class="op">*</span>x<span class="op">,</span> u16 <span class="op">*</span>y<span class="op">,</span> u16 k<span class="op">)</span></span> <span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="op">{</span></span> <span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a> u16 tmp_x <span class="op">=</span> <span class="op">*</span>x<span class="op">;</span></span> <span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a> u16 tmp_y <span class="op">=</span> <span class="op">*</span>y<span class="op">;</span></span> <span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span> <span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> <span class="op">*</span>x <span class="op">=</span> <span class="op">(((</span>tmp_x<span class="op">)>>(</span><span class="dv">7</span><span class="op">))</span> <span class="op">|</span> <span class="op">((</span>tmp_x<span class="op">)<<(</span><span class="dv">16</span><span class="op">-(</span><span class="dv">7</span><span class="op">))));</span> <span class="co">// ROR(7)</span></span> <span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> <span class="op">*</span>x <span class="op">+=</span> <span class="op">*</span>y<span class="op">;</span></span> <span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span> <span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> <span class="op">*</span>x <span class="op">=</span> <span class="op">*</span>x <span class="op">^</span> k<span class="op">;</span></span> <span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a></span> <span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> <span class="op">*</span>y <span class="op">=</span> <span class="op">(((</span>tmp_y<span class="op">)<<(</span><span class="dv">2</span><span class="op">))</span> <span class="op">|</span> <span class="op">(</span>tmp_y<span class="op">>>(</span><span class="dv">16</span><span class="op">-(</span><span class="dv">2</span><span class="op">))));</span> <span class="co">// ROL(2)</span></span> <span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="op">*</span>y <span class="op">=</span> <span class="op">*</span>y <span class="op">^</span> <span class="op">*</span>x<span class="op">;</span></span> <span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="op">}</span></span></code></pre></div> </section> <section id="speck---möglicher-angriff-1" class="slide level1"> <h1>Speck - Möglicher Angriff</h1> <ul> <li>Der Rundenschlüssel steckt in der XOR Operation:</li> </ul> <p><img data-src="img/er16_enc_rk.png" /> <img data-src="img/er16_annot.png" /></p> </section> <section id="correlation-power-analysis" class="slide level1"> <h1>Correlation Power Analysis</h1> <ul> <li>Variante von Differential Power Analysis (DPA)</li> <li>Nutzt Pearson Correlation Coefficient (PCC)</li> <li><strong>Bei Speck:</strong> Korrelation zwischen Power-Trace und Rundenschlüssel</li> <li>Vorgehen: <ul> <li>Modell erstellen</li> <li>Finden der Korrelationen im Modell</li> <li>Anwenden auf Hardware Implementierung</li> </ul></li> </ul> </section> <section id="hamming-weight" class="slide level1"> <h1>Hamming Weight</h1> <ul> <li>Passendes Modell zum ‘bewerten’ des Stromverbrauchs</li> <li>Chip hat ein gewissen Basisverbrauch (IDLE)</li> <li>Werden Bytes im Chip verändert (<span class="math inline">0 → 1; 1 → 0</span>), wird Strom benötigt</li> <li>Verhalten kann durch die Hamming-Distanz simuliert werden</li> <li><strong>Hamming Distanz:</strong> Anzahl der veränderten Bits:</li> </ul> <p><span class="math display"><em>H</em><em>D</em>(0100101,0010101) = 2</span></p> <p>Der Unterschied zweier per XOR verknüpfter Daten, wird als Hamming-Gewicht bezeichnet:</p> <p><span class="math display"><em>H</em><em>a</em><em>m</em><em>m</em><em>i</em><em>n</em><em>g</em><em>D</em><em>i</em><em>s</em><em>t</em><em>a</em><em>n</em><em>c</em><em>e</em>(0100101,0010101) = <em>H</em><em>a</em><em>m</em><em>m</em><em>i</em><em>n</em><em>g</em><em>W</em><em>e</em><em>i</em><em>g</em><em>h</em><em>t</em>(0100101⊕0010101)</span></p> </section> <section id="speck---modell" class="slide level1"> <h1>Speck - Modell</h1> <ul> <li>Einfaches Modell der Speck Verschlüsselung</li> <li>Kann für die ersten 2 Byte des Rundenschlüssels genutzt werden:</li> </ul> <div class="sourceCode" id="cb3"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> simple_speck(plaintext, key):</span> <span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a> Ct_0 <span class="op">=</span> (<span class="bu">int</span>(plaintext[<span class="dv">1</span>]) <span class="op"><<</span> <span class="dv">8</span>) <span class="op">+</span> <span class="bu">int</span>(plaintext[<span class="dv">0</span>]) <span class="co"># RIGHT Key</span></span> <span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a> Ct_1 <span class="op">=</span> (<span class="bu">int</span>(plaintext[<span class="dv">3</span>]) <span class="op"><<</span> <span class="dv">8</span>) <span class="op">+</span> <span class="bu">int</span>(plaintext[<span class="dv">2</span>]) <span class="co"># LEFT Key</span></span> <span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span> <span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a> Ct_1, Ct_0 <span class="op">=</span> ER16(Ct_1, Ct_0, key) <span class="co"># Calculate Roundfunction</span></span> <span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span> <span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a> <span class="cf">return</span> popcount((Ct_1 <span class="op"><<</span> <span class="dv">8</span>) <span class="op">+</span> Ct_0) <span class="co"># Return Hamming Weight (aka Popcount)</span></span></code></pre></div> </section> <section id="speck---simulation" class="slide level1"> <h1>Speck - Simulation</h1> <ol type="1"> <li>Simulation anhand des Modells mit <span class="math inline"><em>n</em></span> traces</li> <li>Generieren von <span class="math inline"><em>n</em></span> zufälligen Klartexten mit <strong>fixem</strong> Keybyte (+ noise)</li> <li>Simulation aller möglichen Keybytes per Hamming Weight</li> <li>Berechnen des PCC aller Keys über alle traces</li> </ol> <p><img data-src="img/simulation_corr.png" /></p> <p><span class="math inline">→</span> Das korrekte Keybyte ist: 0x68</p> </section> <section id="angriff---hardware" class="slide level1"> <h1>Angriff - Hardware</h1> <ol type="1"> <li>Implementierung von Speck auf CW</li> <li>Aufzeichnen von <span class="math inline"><em>n</em></span> Power Traces</li> <li>Leakage Test</li> <li>Berechnung des Software Modells</li> <li>Berechnen der Korrelationen zwischen Modell/Powertraces <ul> <li>Keybyte für Keybyte</li> <li>Rückrechnen des Rundenschlüssels</li> </ul></li> </ol> </section> <section id="t-test" class="slide level1"> <h1>T-Test</h1> <ul> <li>Kann verwendet werden, um <em>Leakage</em> zu erkennen <ul> <li>Gibt das Berechnen einer Chiffre mehr Information zurück als geplant: Leakage</li> <li>Ausnutzbar z.B. durch die Power Traces</li> </ul></li> <li>Berechnet durch:</li> </ul> <p><img data-src="img/ttest_calc.png" /></p> <ul> <li>Vergleicht zwei unabhängige Stichproben miteinander</li> <li>Je unterschiedlicher die Mittelwerte <span class="math inline">→</span> desto mehr Leakage</li> </ul> </section> <section id="t-test-1" class="slide level1"> <h1>T-Test</h1> <ul> <li>T-Test der aufgezeichneten Power-Traces:</li> </ul> <p><img data-src="img/t_test_original.png" /></p> <ul> <li>Erkennbar, dass Leakage vorhanden sein muss</li> </ul> </section> <section id="korrelationen-des-ersten-keybytes" class="slide level1"> <h1>Korrelationen des ersten Keybytes</h1> <ul> <li>Korrelationen des ersten Keybytes</li> <li>Korrelation fällt höher aus als im Modell</li> <li>Deutliches Maximum der Korrelation bei 0x22 (Korrektes Keybyte)</li> </ul> <p><img data-src="img/correlation_first_keybyte.png" width="550" /></p> </section> <section id="problem-blocksize" class="slide level1"> <h1>Problem: Blocksize</h1> <ul> <li>Bei <strong>Speck3264:</strong> Operationen nicht auf Byte, sondern auf 16-Bit Ebene</li> <li>Erste Idee: Modell und Korrelation auf <span class="math inline">2<sup>16</sup></span> Keys</li> <li><span class="math inline">→</span> Keyspace ist abdeckbar (65536 Keys)</li> <li><span class="math inline">→</span> Zu langsam</li> <li><span class="math inline">→</span> Nicht möglich für andere Modis von Speck (32 Bit Subkeys)</li> <li><strong>Lösung:</strong> Modell funktioniert auch auf allen Teilbytes per Shift:</li> </ul> <div class="sourceCode" id="cb4"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>rightkey <span class="op">=</span> <span class="bn">0x00</span></span> <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> guess_key <span class="kw">in</span> <span class="bu">range</span>(<span class="dv">256</span>):</span> <span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a> leftkey <span class="op">=</span> model( (guess_key <span class="op"><<</span> <span class="dv">8</span>) <span class="op">+</span> righkey )</span> <span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span> <span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> guess_key <span class="kw">in</span> <span class="bu">range</span>(<span class="dv">256</span>):</span> <span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a> rightkey <span class="op">=</span> model( (leftkey <span class="op"><<</span> <span class="dv">8</span>) <span class="op">+</span> guess_key )</span></code></pre></div> <ul> <li>Auch umsetzbar auf Speck mit Blocksize > 16 Bit</li> </ul> </section> <section id="problem-nth-keybytes" class="slide level1"> <h1>Problem: <span class="math inline"><em>n</em><sup><em>t</em><em>h</em></sup></span> Keybytes</h1> <ul> <li>Modell kann nur für die ersten zwei Keybytes genutzt werden, da:</li> </ul> <div class="sourceCode" id="cb5"><pre class="sourceCode c"><code class="sourceCode c"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i in <span class="fl">0.</span><span class="er">.</span><span class="op"><</span><span class="dv">22</span></span> <span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a> ER16<span class="op">(</span>Ct<span class="op">[</span><span class="dv">1</span><span class="op">],</span> Ct<span class="op">[</span><span class="dv">0</span><span class="op">],</span> rk<span class="op">[</span>i<span class="op">++])</span></span></code></pre></div> <ul> <li>Die bereits bekannten Rundenschlüssel müssen mit eingeschlossen werden</li> <li>Muss an der richtigen Stelle passieren (<span class="math inline">⊕</span>-Operation)</li> </ul> </section> <section id="problem-nth-keybytes-1" class="slide level1"> <h1>Problem: <span class="math inline"><em>n</em><sup><em>t</em><em>h</em></sup></span> Keybytes</h1> <ul> <li>Anpassung des Modells:</li> </ul> <div class="sourceCode" id="cb6"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a> <span class="co"># -------------- for one key -----------------#</span></span> <span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a> x <span class="op">=</span> ((x <span class="op"><<</span> (<span class="dv">16</span> <span class="op">-</span> ALPHA)) <span class="op">+</span> (x <span class="op">>></span> ALPHA)) <span class="op">&</span> mod_mask <span class="co"># x = ROR(x, 7)</span></span> <span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a> x <span class="op">=</span> (x <span class="op">+</span> y) <span class="op">&</span> mod_mask <span class="co"># x = ADD(x, y)</span></span> <span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a> x <span class="op">=</span> x <span class="op">^</span> knownkey[<span class="dv">0</span>]</span> <span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a> <span class="co"># -------------- for second key -----------------#</span></span> <span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a> y <span class="op">=</span> ((y <span class="op">>></span> (<span class="dv">16</span> <span class="op">-</span> BETA)) <span class="op">+</span> (y <span class="op"><<</span> BETA)) <span class="op">&</span> mod_mask <span class="co"># y = ROL(y, 2)</span></span> <span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a> y <span class="op">=</span> y <span class="op">^</span> x <span class="co"># y = XOR(y, x)</span></span> <span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a> x <span class="op">=</span> ((x <span class="op"><<</span> (<span class="dv">16</span> <span class="op">-</span> ALPHA)) <span class="op">+</span> (x <span class="op">>></span> ALPHA)) <span class="op">&</span> mod_mask <span class="co"># x = ROR(x, 7)</span></span> <span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a> x <span class="op">=</span> (x <span class="op">+</span> y) <span class="op">&</span> mod_mask <span class="co"># x = ADD(x, y)</span></span> <span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a> x <span class="op">=</span> x <span class="op">^</span> knownkey[<span class="dv">1</span>] <span class="co"># x = XOR(x, k)</span></span> <span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a> <span class="co"># -------------- for third key -----------------#</span></span> <span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a> <span class="co"># [...]</span></span></code></pre></div> </section> <section id="korrelationen-des-ersten-keybytes-1" class="slide level1"> <h1>Korrelationen des ersten Keybytes</h1> <ul> <li>Graph zeigt die Korrelationen des ersten Keybytes bis 5000 traces</li> <li>Ab ~800 Traces hebt sich die Korrelation deutlich hervor</li> </ul> <p><img data-src="img/traces.png" width="550" /></p> </section> <section id="gegenmaßnahmen" class="slide level1"> <h1>Gegenmaßnahmen</h1> </section> <section id="hiding" class="slide level1"> <h1>Hiding</h1> <ul> <li>Verstecken des eigentlichen “Leakages” in Rauschen</li> <li><span class="math inline">→</span> Erhöhung des vorhandenen Rauschens während der Berechnung</li> <li>Mehrere Möglichkeiten <ul> <li>Mischen der Instruction-Order</li> <li><strong>Hinzufügen von “Dummy Instructionen”</strong></li> <li>Clock Jitter</li> </ul></li> </ul> </section> <section id="hiding---code" class="slide level1"> <h1>Hiding - Code</h1> <ul> <li><strong>Ansatz:</strong> Korrelation kommt von <code>ER16()</code> <ul> <li>Add/XOR/Rotate</li> </ul></li> <li>Hinzufügen weitere AXR Operationen um noise zu erhöhen</li> <li>Ersetzen von jeder XOR Operation mit folgender Implementierung:</li> </ul> <div class="sourceCode" id="cb7"><pre class="sourceCode c"><code class="sourceCode c"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="dt">uint16_t</span> XOR<span class="op">(</span><span class="dt">uint16_t</span> a<span class="op">,</span> <span class="dt">uint16_t</span> b<span class="op">,</span> <span class="dt">int</span> random<span class="op">)</span> <span class="op">{</span></span> <span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a> <span class="dt">uint8_t</span> tmp <span class="op">=</span> random <span class="op">^</span> <span class="bn">0x5F</span><span class="op">;</span></span> <span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a> tmp <span class="op">^=</span> <span class="op">(</span>random <span class="op">^</span> a<span class="op">);</span></span> <span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a> tmp <span class="op">^=</span> <span class="op">(</span>tmp <span class="op">^</span> b<span class="op">);</span></span> <span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a> tmp <span class="op">&=</span> <span class="op">(</span>tmp <span class="op">&</span> a<span class="op">);</span></span> <span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a> tmp <span class="op">&=</span> <span class="op">(</span>tmp <span class="op">&</span> b<span class="op">);</span></span> <span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a> <span class="cf">return</span> a <span class="op">^</span> b<span class="op">;</span></span> <span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="op">}</span></span></code></pre></div> <ul> <li><code>Random</code> wird bei jeder Verschlüsslung erneut generiert</li> </ul> </section> <section id="hiding---t-test" class="slide level1"> <h1>Hiding - T-Test</h1> <ul> <li>Ergebnisse des T-Tests mit implementierter Hiding Maßnahmen:</li> </ul> <p><img data-src="img/t_test_hiding_random.png" /></p> <ul> <li>Bedarf weiterer Analysen, denn Unterschiede der beiden T-Tests sind nur minimal</li> <li>Laut T-Test <strong>keine</strong> Indikation dass Hiding funktioniert</li> </ul> </section> <section id="korrelationen-des-ersten-keybytes-2" class="slide level1"> <h1>Korrelationen des ersten Keybytes</h1> <ul> <li>Besseres Ergebnis der Korrelationen bis 5000 Traces</li> <li>Korrelationen flachen ab ~800 drastisch ab</li> <li>Keine Korrelation sticht heraus</li> </ul> <p><img data-src="img/corr_traces_hiding_5k.png" width="550" /></p> <ul> <li>Es war nicht möglich den Angriff erneut durchzuführen</li> <li>Neue Korrelationen nach einigen Test lediglich bei ~0.18 mit falschem Keybyte</li> <li><span class="math inline">→</span> Maßnahme ist erfolgreich</li> </ul> </section> <section id="hiding-potentieller-bypass" class="slide level1"> <h1>Hiding (potentieller) Bypass</h1> <ul> <li>Korrelation sollte weiterhin möglich sein, wenn die Operationen in Betracht gezogen werden</li> <li>Schwierigkeit hängt am Zufallszahlengenerator</li> <li><strong>Problem:</strong> Sichere Zufallszahlen auf Embedded Chips sind nicht trivial</li> </ul> <p><span class="math inline">→</span> Bypass konnte <strong>nicht</strong> realisiert werden</p> </section> <section id="referenzen" class="slide level1"> <h1>Referenzen</h1> <ul> <li><a href="Improved%20Differential%20Cryptanalysis%20of%20Round-Reduced%20Speck">Improved Differential Cryptanalysis of Round-Reduced Speck</a></li> <li><a href="Breaking%20Speck%20cryptosystem%20using%20correlation%20power%20analysis%20attack">Breaking Speck cryptosystem using correlation power analysis attack</a></li> <li><a href="%7BSpeck-R:%20An%20ultra%20light-weight%20cryptographic%20scheme%20for%20Internet%20of%20Things">Speck-R: An ultra light-weight cryptographic scheme for Internet of Things</a></li> </ul> </section> </div> </div> <script src="./reveal.js/dist/reveal.js"></script> <!-- reveal.js plugins --> <script src="./reveal.js/plugin/notes/notes.js"></script> <script src="./reveal.js/plugin/search/search.js"></script> <script src="./reveal.js/plugin/zoom/zoom.js"></script> <script> // Full list of configuration options available at: // https://revealjs.com/config/ Reveal.initialize({ // Display controls in the bottom right corner controls: true, // Help the user learn the controls by providing hints, for example by // bouncing the down arrow when they first encounter a vertical slide controlsTutorial: true, // Determines where controls appear, "edges" or "bottom-right" controlsLayout: 'bottom-right', // Visibility rule for backwards navigation arrows; "faded", "hidden" // or "visible" controlsBackArrows: 'faded', // Display a presentation progress bar progress: true, // Display the page number of the current slide slideNumber: true, // 'all', 'print', or 'speaker' showSlideNumber: 'all', // Add the current slide number to the URL hash so that reloading the // page/copying the URL will return you to the same slide hash: false, // Start with 1 for the hash rather than 0 hashOneBasedIndex: false, // Flags if we should monitor the hash and change slides accordingly respondToHashChanges: true, // Push each slide change to the browser history history: false, // Enable keyboard shortcuts for navigation keyboard: true, // Enable the slide overview mode overview: true, // Disables the default reveal.js slide layout (scaling and centering) // so that you can use custom CSS layout disableLayout: false, // Vertical centering of slides center: true, // Enables touch navigation on devices with touch input touch: true, // Loop the presentation loop: false, // Change the presentation direction to be RTL rtl: false, // see https://revealjs.com/vertical-slides/#navigation-mode navigationMode: 'default', // Randomizes the order of slides each time the presentation loads shuffle: false, // Turns fragments on and off globally fragments: true, // Flags whether to include the current fragment in the URL, // so that reloading brings you to the same fragment position fragmentInURL: true, // Flags if the presentation is running in an embedded mode, // i.e. contained within a limited portion of the screen embedded: false, // Flags if we should show a help overlay when the questionmark // key is pressed help: true, // Flags if it should be possible to pause the presentation (blackout) pause: true, // Flags if speaker notes should be visible to all viewers showNotes: false, // Global override for autoplaying embedded media (null/true/false) autoPlayMedia: null, // Global override for preloading lazy-loaded iframes (null/true/false) preloadIframes: null, // Number of milliseconds between automatically proceeding to the // next slide, disabled when set to 0, this value can be overwritten // by using a data-autoslide attribute on your slides autoSlide: 0, // Stop auto-sliding after user input autoSlideStoppable: true, // Use this method for navigation when auto-sliding autoSlideMethod: null, // Specify the average time in seconds that you think you will spend // presenting each slide. This is used to show a pacing timer in the // speaker view defaultTiming: null, // Enable slide navigation via mouse wheel mouseWheel: false, // The display mode that will be used to show slides display: 'block', // Hide cursor if inactive hideInactiveCursor: true, // Time before the cursor is hidden (in ms) hideCursorTime: 5000, // Opens links in an iframe preview overlay previewLinks: false, // Transition style (none/fade/slide/convex/concave/zoom) transition: 'slide', // Transition speed (default/fast/slow) transitionSpeed: 'default', // Transition style for full page slide backgrounds // (none/fade/slide/convex/concave/zoom) backgroundTransition: 'fade', // Number of slides away from the current that are visible viewDistance: 3, // Number of slides away from the current that are visible on mobile // devices. It is advisable to set this to a lower number than // viewDistance in order to save resources. mobileViewDistance: 2, // reveal.js plugins plugins: [ RevealNotes, RevealSearch, RevealZoom ] }); </script> </body> </html>