123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 |
- /*
- * The Clear BSD License
- * Copyright (c) 2015, Freescale Semiconductor, Inc.
- * Copyright 2016-2017 NXP
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted (subject to the limitations in the disclaimer below) provided
- * that the following conditions are met:
- *
- * o Redistributions of source code must retain the above copyright notice, this list
- * of conditions and the following disclaimer.
- *
- * o Redistributions in binary form must reproduce the above copyright notice, this
- * list of conditions and the following disclaimer in the documentation and/or
- * other materials provided with the distribution.
- *
- * o Neither the name of the copyright holder nor the names of its
- * contributors may be used to endorse or promote products derived from this
- * software without specific prior written permission.
- *
- * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include "fsl_rtc.h"
- /*******************************************************************************
- * Definitions
- ******************************************************************************/
- /* Component ID definition, used by tools. */
- #ifndef FSL_COMPONENT_ID
- #define FSL_COMPONENT_ID "platform.drivers.rtc"
- #endif
- #define SECONDS_IN_A_DAY (86400U)
- #define SECONDS_IN_A_HOUR (3600U)
- #define SECONDS_IN_A_MINUTE (60U)
- #define DAYS_IN_A_YEAR (365U)
- #define YEAR_RANGE_START (1970U)
- #define YEAR_RANGE_END (2099U)
- /*******************************************************************************
- * Prototypes
- ******************************************************************************/
- /*!
- * @brief Checks whether the date and time passed in is valid
- *
- * @param datetime Pointer to structure where the date and time details are stored
- *
- * @return Returns false if the date & time details are out of range; true if in range
- */
- static bool RTC_CheckDatetimeFormat(const rtc_datetime_t *datetime);
- /*!
- * @brief Converts time data from datetime to seconds
- *
- * @param datetime Pointer to datetime structure where the date and time details are stored
- *
- * @return The result of the conversion in seconds
- */
- static uint32_t RTC_ConvertDatetimeToSeconds(const rtc_datetime_t *datetime);
- /*!
- * @brief Converts time data from seconds to a datetime structure
- *
- * @param seconds Seconds value that needs to be converted to datetime format
- * @param datetime Pointer to the datetime structure where the result of the conversion is stored
- */
- static void RTC_ConvertSecondsToDatetime(uint32_t seconds, rtc_datetime_t *datetime);
- /*******************************************************************************
- * Code
- ******************************************************************************/
- static bool RTC_CheckDatetimeFormat(const rtc_datetime_t *datetime)
- {
- assert(datetime);
- /* Table of days in a month for a non leap year. First entry in the table is not used,
- * valid months start from 1
- */
- uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
- /* Check year, month, hour, minute, seconds */
- if ((datetime->year < YEAR_RANGE_START) || (datetime->year > YEAR_RANGE_END) || (datetime->month > 12U) ||
- (datetime->month < 1U) || (datetime->hour >= 24U) || (datetime->minute >= 60U) || (datetime->second >= 60U))
- {
- /* If not correct then error*/
- return false;
- }
- /* Adjust the days in February for a leap year */
- if ((((datetime->year & 3U) == 0) && (datetime->year % 100 != 0)) || (datetime->year % 400 == 0))
- {
- daysPerMonth[2] = 29U;
- }
- /* Check the validity of the day */
- if ((datetime->day > daysPerMonth[datetime->month]) || (datetime->day < 1U))
- {
- return false;
- }
- return true;
- }
- static uint32_t RTC_ConvertDatetimeToSeconds(const rtc_datetime_t *datetime)
- {
- assert(datetime);
- /* Number of days from begin of the non Leap-year*/
- /* Number of days from begin of the non Leap-year*/
- uint16_t monthDays[] = {0U, 0U, 31U, 59U, 90U, 120U, 151U, 181U, 212U, 243U, 273U, 304U, 334U};
- uint32_t seconds;
- /* Compute number of days from 1970 till given year*/
- seconds = (datetime->year - 1970U) * DAYS_IN_A_YEAR;
- /* Add leap year days */
- seconds += ((datetime->year / 4) - (1970U / 4));
- /* Add number of days till given month*/
- seconds += monthDays[datetime->month];
- /* Add days in given month. We subtract the current day as it is
- * represented in the hours, minutes and seconds field*/
- seconds += (datetime->day - 1);
- /* For leap year if month less than or equal to Febraury, decrement day counter*/
- if ((!(datetime->year & 3U)) && (datetime->month <= 2U))
- {
- seconds--;
- }
- seconds = (seconds * SECONDS_IN_A_DAY) + (datetime->hour * SECONDS_IN_A_HOUR) +
- (datetime->minute * SECONDS_IN_A_MINUTE) + datetime->second;
- return seconds;
- }
- static void RTC_ConvertSecondsToDatetime(uint32_t seconds, rtc_datetime_t *datetime)
- {
- assert(datetime);
- uint32_t x;
- uint32_t secondsRemaining, days;
- uint16_t daysInYear;
- /* Table of days in a month for a non leap year. First entry in the table is not used,
- * valid months start from 1
- */
- uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
- /* Start with the seconds value that is passed in to be converted to date time format */
- secondsRemaining = seconds;
- /* Calcuate the number of days, we add 1 for the current day which is represented in the
- * hours and seconds field
- */
- days = secondsRemaining / SECONDS_IN_A_DAY + 1;
- /* Update seconds left*/
- secondsRemaining = secondsRemaining % SECONDS_IN_A_DAY;
- /* Calculate the datetime hour, minute and second fields */
- datetime->hour = secondsRemaining / SECONDS_IN_A_HOUR;
- secondsRemaining = secondsRemaining % SECONDS_IN_A_HOUR;
- datetime->minute = secondsRemaining / 60U;
- datetime->second = secondsRemaining % SECONDS_IN_A_MINUTE;
- /* Calculate year */
- daysInYear = DAYS_IN_A_YEAR;
- datetime->year = YEAR_RANGE_START;
- while (days > daysInYear)
- {
- /* Decrease day count by a year and increment year by 1 */
- days -= daysInYear;
- datetime->year++;
- /* Adjust the number of days for a leap year */
- if (datetime->year & 3U)
- {
- daysInYear = DAYS_IN_A_YEAR;
- }
- else
- {
- daysInYear = DAYS_IN_A_YEAR + 1;
- }
- }
- /* Adjust the days in February for a leap year */
- if (!(datetime->year & 3U))
- {
- daysPerMonth[2] = 29U;
- }
- for (x = 1U; x <= 12U; x++)
- {
- if (days <= daysPerMonth[x])
- {
- datetime->month = x;
- break;
- }
- else
- {
- days -= daysPerMonth[x];
- }
- }
- datetime->day = days;
- }
- void RTC_Init(RTC_Type *base, const rtc_config_t *config)
- {
- assert(config);
- uint32_t reg;
- #if defined(RTC_CLOCKS)
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- CLOCK_EnableClock(kCLOCK_Rtc0);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- #endif /* RTC_CLOCKS */
- /* Issue a software reset if timer is invalid */
- if (RTC_GetStatusFlags(RTC) & kRTC_TimeInvalidFlag)
- {
- RTC_Reset(RTC);
- }
- reg = base->CR;
- /* Setup the update mode and supervisor access mode */
- reg &= ~(RTC_CR_UM_MASK | RTC_CR_SUP_MASK);
- reg |= RTC_CR_UM(config->updateMode) | RTC_CR_SUP(config->supervisorAccess);
- #if defined(FSL_FEATURE_RTC_HAS_WAKEUP_PIN_SELECTION) && FSL_FEATURE_RTC_HAS_WAKEUP_PIN_SELECTION
- /* Setup the wakeup pin select */
- reg &= ~(RTC_CR_WPS_MASK);
- reg |= RTC_CR_WPS(config->wakeupSelect);
- #endif /* FSL_FEATURE_RTC_HAS_WAKEUP_PIN */
- base->CR = reg;
- /* Configure the RTC time compensation register */
- base->TCR = (RTC_TCR_CIR(config->compensationInterval) | RTC_TCR_TCR(config->compensationTime));
-
- #if defined(FSL_FEATURE_RTC_HAS_TSIC) && FSL_FEATURE_RTC_HAS_TSIC
- /* Configure RTC timer seconds interrupt to be generated once per second */
- base->IER &= ~(RTC_IER_TSIC_MASK | RTC_IER_TSIE_MASK);
- #endif
- }
- void RTC_GetDefaultConfig(rtc_config_t *config)
- {
- assert(config);
- /* Wakeup pin will assert if the RTC interrupt asserts or if the wakeup pin is turned on */
- config->wakeupSelect = false;
- /* Registers cannot be written when locked */
- config->updateMode = false;
- /* Non-supervisor mode write accesses are not supported and will generate a bus error */
- config->supervisorAccess = false;
- /* Compensation interval used by the crystal compensation logic */
- config->compensationInterval = 0;
- /* Compensation time used by the crystal compensation logic */
- config->compensationTime = 0;
- }
- status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
- {
- assert(datetime);
- /* Return error if the time provided is not valid */
- if (!(RTC_CheckDatetimeFormat(datetime)))
- {
- return kStatus_InvalidArgument;
- }
- /* Set time in seconds */
- base->TSR = RTC_ConvertDatetimeToSeconds(datetime);
- return kStatus_Success;
- }
- void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
- {
- assert(datetime);
- uint32_t seconds = 0;
- seconds = base->TSR;
- RTC_ConvertSecondsToDatetime(seconds, datetime);
- }
- status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
- {
- assert(alarmTime);
- uint32_t alarmSeconds = 0;
- uint32_t currSeconds = 0;
- /* Return error if the alarm time provided is not valid */
- if (!(RTC_CheckDatetimeFormat(alarmTime)))
- {
- return kStatus_InvalidArgument;
- }
- alarmSeconds = RTC_ConvertDatetimeToSeconds(alarmTime);
- /* Get the current time */
- currSeconds = base->TSR;
- /* Return error if the alarm time has passed */
- if (alarmSeconds < currSeconds)
- {
- return kStatus_Fail;
- }
- /* Set alarm in seconds*/
- base->TAR = alarmSeconds;
- return kStatus_Success;
- }
- void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
- {
- assert(datetime);
- uint32_t alarmSeconds = 0;
- /* Get alarm in seconds */
- alarmSeconds = base->TAR;
- RTC_ConvertSecondsToDatetime(alarmSeconds, datetime);
- }
- void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
- {
- uint32_t tmp32 = 0U;
- /* RTC_IER */
- if (kRTC_TimeInvalidInterruptEnable == (kRTC_TimeInvalidInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TIIE_MASK;
- }
- if (kRTC_TimeOverflowInterruptEnable == (kRTC_TimeOverflowInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TOIE_MASK;
- }
- if (kRTC_AlarmInterruptEnable == (kRTC_AlarmInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TAIE_MASK;
- }
- if (kRTC_SecondsInterruptEnable == (kRTC_SecondsInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TSIE_MASK;
- }
- #if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
- if (kRTC_MonotonicOverflowInterruptEnable == (kRTC_MonotonicOverflowInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_MOIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */
- base->IER |= tmp32;
- #if (defined(FSL_FEATURE_RTC_HAS_TIR) && FSL_FEATURE_RTC_HAS_TIR)
- tmp32 = 0U;
- /* RTC_TIR */
- if (kRTC_TestModeInterruptEnable == (kRTC_TestModeInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_TMIE_MASK;
- }
- if (kRTC_FlashSecurityInterruptEnable == (kRTC_FlashSecurityInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_FSIE_MASK;
- }
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_TPIE) && FSL_FEATURE_RTC_HAS_TIR_TPIE)
- if (kRTC_TamperPinInterruptEnable == (kRTC_TamperPinInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_TPIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_TPIE */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_SIE) && FSL_FEATURE_RTC_HAS_TIR_SIE)
- if (kRTC_SecurityModuleInterruptEnable == (kRTC_SecurityModuleInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_SIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_SIE */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_LCIE) && FSL_FEATURE_RTC_HAS_TIR_LCIE)
- if (kRTC_LossOfClockInterruptEnable == (kRTC_LossOfClockInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_LCIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_LCIE */
- base->TIR |= tmp32;
- #endif /* FSL_FEATURE_RTC_HAS_TIR */
- }
- void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
- {
- uint32_t tmp32 = 0U;
- /* RTC_IER */
- if (kRTC_TimeInvalidInterruptEnable == (kRTC_TimeInvalidInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TIIE_MASK;
- }
- if (kRTC_TimeOverflowInterruptEnable == (kRTC_TimeOverflowInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TOIE_MASK;
- }
- if (kRTC_AlarmInterruptEnable == (kRTC_AlarmInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TAIE_MASK;
- }
- if (kRTC_SecondsInterruptEnable == (kRTC_SecondsInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_TSIE_MASK;
- }
- #if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
- if (kRTC_MonotonicOverflowInterruptEnable == (kRTC_MonotonicOverflowInterruptEnable & mask))
- {
- tmp32 |= RTC_IER_MOIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */
- base->IER &= (uint32_t)(~tmp32);
- #if (defined(FSL_FEATURE_RTC_HAS_TIR) && FSL_FEATURE_RTC_HAS_TIR)
- tmp32 = 0U;
- /* RTC_TIR */
- if (kRTC_TestModeInterruptEnable == (kRTC_TestModeInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_TMIE_MASK;
- }
- if (kRTC_FlashSecurityInterruptEnable == (kRTC_FlashSecurityInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_FSIE_MASK;
- }
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_TPIE) && FSL_FEATURE_RTC_HAS_TIR_TPIE)
- if (kRTC_TamperPinInterruptEnable == (kRTC_TamperPinInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_TPIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_TPIE */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_SIE) && FSL_FEATURE_RTC_HAS_TIR_SIE)
- if (kRTC_SecurityModuleInterruptEnable == (kRTC_SecurityModuleInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_SIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_SIE */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_LCIE) && FSL_FEATURE_RTC_HAS_TIR_LCIE)
- if (kRTC_LossOfClockInterruptEnable == (kRTC_LossOfClockInterruptEnable & mask))
- {
- tmp32 |= RTC_TIR_LCIE_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_LCIE */
- base->TIR &= (uint32_t)(~tmp32);
- #endif /* FSL_FEATURE_RTC_HAS_TIR */
- }
- uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
- {
- uint32_t tmp32 = 0U;
- /* RTC_IER */
- if (RTC_IER_TIIE_MASK == (RTC_IER_TIIE_MASK & base->IER))
- {
- tmp32 |= kRTC_TimeInvalidInterruptEnable;
- }
- if (RTC_IER_TOIE_MASK == (RTC_IER_TOIE_MASK & base->IER))
- {
- tmp32 |= kRTC_TimeOverflowInterruptEnable;
- }
- if (RTC_IER_TAIE_MASK == (RTC_IER_TAIE_MASK & base->IER))
- {
- tmp32 |= kRTC_AlarmInterruptEnable;
- }
- if (RTC_IER_TSIE_MASK == (RTC_IER_TSIE_MASK & base->IER))
- {
- tmp32 |= kRTC_SecondsInterruptEnable;
- }
- #if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
- if (RTC_IER_MOIE_MASK == (RTC_IER_MOIE_MASK & base->IER))
- {
- tmp32 |= kRTC_MonotonicOverflowInterruptEnable;
- }
- #endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR) && FSL_FEATURE_RTC_HAS_TIR)
- /* RTC_TIR */
- if (RTC_TIR_TMIE_MASK == (RTC_TIR_TMIE_MASK & base->TIR))
- {
- tmp32 |= kRTC_TestModeInterruptEnable;
- }
- if (RTC_TIR_FSIE_MASK == (RTC_TIR_FSIE_MASK & base->TIR))
- {
- tmp32 |= kRTC_FlashSecurityInterruptEnable;
- }
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_TPIE) && FSL_FEATURE_RTC_HAS_TIR_TPIE)
- if (RTC_TIR_TPIE_MASK == (RTC_TIR_TPIE_MASK & base->TIR))
- {
- tmp32 |= kRTC_TamperPinInterruptEnable;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_TPIE */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_SIE) && FSL_FEATURE_RTC_HAS_TIR_SIE)
- if (RTC_TIR_SIE_MASK == (RTC_TIR_SIE_MASK & base->TIR))
- {
- tmp32 |= kRTC_SecurityModuleInterruptEnable;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_SIE */
- #if (defined(FSL_FEATURE_RTC_HAS_TIR_LCIE) && FSL_FEATURE_RTC_HAS_TIR_LCIE)
- if (RTC_TIR_LCIE_MASK == (RTC_TIR_LCIE_MASK & base->TIR))
- {
- tmp32 |= kRTC_LossOfClockInterruptEnable;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TIR_LCIE */
- #endif /* FSL_FEATURE_RTC_HAS_TIR */
- return tmp32;
- }
- uint32_t RTC_GetStatusFlags(RTC_Type *base)
- {
- uint32_t tmp32 = 0U;
- /* RTC_SR */
- if (RTC_SR_TIF_MASK == (RTC_SR_TIF_MASK & base->SR))
- {
- tmp32 |= kRTC_TimeInvalidFlag;
- }
- if (RTC_SR_TOF_MASK == (RTC_SR_TOF_MASK & base->SR))
- {
- tmp32 |= kRTC_TimeOverflowFlag;
- }
- if (RTC_SR_TAF_MASK == (RTC_SR_TAF_MASK & base->SR))
- {
- tmp32 |= kRTC_AlarmFlag;
- }
- #if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
- if (RTC_SR_MOF_MASK == (RTC_SR_MOF_MASK & base->SR))
- {
- tmp32 |= kRTC_MonotonicOverflowFlag;
- }
- #endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */
- #if (defined(FSL_FEATURE_RTC_HAS_SR_TIDF) && FSL_FEATURE_RTC_HAS_SR_TIDF)
- if (RTC_SR_TIDF_MASK == (RTC_SR_TIDF_MASK & base->SR))
- {
- tmp32 |= kRTC_TamperInterruptDetectFlag;
- }
- #endif /* FSL_FEATURE_RTC_HAS_SR_TIDF */
- #if (defined(FSL_FEATURE_RTC_HAS_TDR) && FSL_FEATURE_RTC_HAS_TDR)
- /* RTC_TDR */
- if (RTC_TDR_TMF_MASK == (RTC_TDR_TMF_MASK & base->TDR))
- {
- tmp32 |= kRTC_TestModeFlag;
- }
- if (RTC_TDR_FSF_MASK == (RTC_TDR_FSF_MASK & base->TDR))
- {
- tmp32 |= kRTC_FlashSecurityFlag;
- }
- #if (defined(FSL_FEATURE_RTC_HAS_TDR_TPF) && FSL_FEATURE_RTC_HAS_TDR_TPF)
- if (RTC_TDR_TPF_MASK == (RTC_TDR_TPF_MASK & base->TDR))
- {
- tmp32 |= kRTC_TamperPinFlag;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TDR_TPF */
- #if (defined(FSL_FEATURE_RTC_HAS_TDR_STF) && FSL_FEATURE_RTC_HAS_TDR_STF)
- if (RTC_TDR_STF_MASK == (RTC_TDR_STF_MASK & base->TDR))
- {
- tmp32 |= kRTC_SecurityTamperFlag;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TDR_STF */
- #if (defined(FSL_FEATURE_RTC_HAS_TDR_LCTF) && FSL_FEATURE_RTC_HAS_TDR_LCTF)
- if (RTC_TDR_LCTF_MASK == (RTC_TDR_LCTF_MASK & base->TDR))
- {
- tmp32 |= kRTC_LossOfClockTamperFlag;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TDR_LCTF */
- #endif /* FSL_FEATURE_RTC_HAS_TDR */
- return tmp32;
- }
- void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
- {
- /* The alarm flag is cleared by writing to the TAR register */
- if (mask & kRTC_AlarmFlag)
- {
- base->TAR = 0U;
- }
- /* The timer overflow flag is cleared by initializing the TSR register.
- * The time counter should be disabled for this write to be successful
- */
- if (mask & kRTC_TimeOverflowFlag)
- {
- base->TSR = 1U;
- }
- /* The timer overflow flag is cleared by initializing the TSR register.
- * The time counter should be disabled for this write to be successful
- */
- if (mask & kRTC_TimeInvalidFlag)
- {
- base->TSR = 1U;
- }
- #if (defined(FSL_FEATURE_RTC_HAS_TDR) && FSL_FEATURE_RTC_HAS_TDR)
- /* To clear, write logic one to this flag after exiting from all test modes */
- if (kRTC_TestModeFlag == (kRTC_TestModeFlag & mask))
- {
- base->TDR = RTC_TDR_TMF_MASK;
- }
- /* To clear, write logic one to this flag after flash security is enabled */
- if (kRTC_FlashSecurityFlag == (kRTC_FlashSecurityFlag & mask))
- {
- base->TDR = RTC_TDR_FSF_MASK;
- }
- #if (defined(FSL_FEATURE_RTC_HAS_TDR_TPF) && FSL_FEATURE_RTC_HAS_TDR_TPF)
- /* To clear, write logic one to the corresponding flag after that tamper pin negates */
- if (kRTC_TamperPinFlag == (kRTC_TamperPinFlag & mask))
- {
- base->TDR = RTC_TDR_TPF_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TDR_TPF */
- #if (defined(FSL_FEATURE_RTC_HAS_TDR_STF) && FSL_FEATURE_RTC_HAS_TDR_STF)
- /* To clear, write logic one to this flag after security module has negated its tamper detect */
- if (kRTC_SecurityTamperFlag == (kRTC_SecurityTamperFlag & mask))
- {
- base->TDR = RTC_TDR_STF_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TDR_STF */
- #if (defined(FSL_FEATURE_RTC_HAS_TDR_LCTF) && FSL_FEATURE_RTC_HAS_TDR_LCTF)
- /* To clear, write logic one to this flag after loss of clock negates */
- if (kRTC_LossOfClockTamperFlag == (kRTC_LossOfClockTamperFlag & mask))
- {
- base->TDR = RTC_TDR_LCTF_MASK;
- }
- #endif /* FSL_FEATURE_RTC_HAS_TDR_LCTF */
- #endif /* FSL_FEATURE_RTC_HAS_TDR */
- }
- #if defined(FSL_FEATURE_RTC_HAS_MONOTONIC) && (FSL_FEATURE_RTC_HAS_MONOTONIC)
- void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)
- {
- assert(counter);
- *counter = (((uint64_t)base->MCHR << 32) | ((uint64_t)base->MCLR));
- }
- void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)
- {
- /* Prepare to initialize the register with the new value written */
- base->MER &= ~RTC_MER_MCE_MASK;
- base->MCHR = (uint32_t)((counter) >> 32);
- base->MCLR = (uint32_t)(counter);
- }
- status_t RTC_IncrementMonotonicCounter(RTC_Type *base)
- {
- if (base->SR & (RTC_SR_MOF_MASK | RTC_SR_TIF_MASK))
- {
- return kStatus_Fail;
- }
- /* Prepare to switch to increment mode */
- base->MER |= RTC_MER_MCE_MASK;
- /* Write anything so the counter increments*/
- base->MCLR = 1U;
- return kStatus_Success;
- }
- #endif /* FSL_FEATURE_RTC_HAS_MONOTONIC */
|