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Abstract. Emerging applications such as the Internet of Things require
security solutions that are small and low cost, yet feature solid protection
against a wide range of sophisticated attacks. Lightweight cryptographic
schemes such as the Speck cipher that was recently proposed by the NSA
aim to solve some of these challenges. However, before using Speck in
any practical application, sound protection against side-channel attacks
must be in place. In this work, we propose a bit-serialized implemen-
tation of Speck, to achieve minimal area footprint. We further propose
a Speck core that is provably secure against first-order side-channel at-
tacks using a threshold implementation technique which depends on se-
cure multiparty computation. The resulting design is a tiny crypto core
that provides AES-like security in under 45 slices on a low-cost Xilinx
Spartan 3 FPGA. The first-order side-channel resistant version of the
same core needs less than 100 slices. The security of the protected core
is validated by state-of-the-art side-channel leakage detection tests.

1 Introduction

Lightweight cryptography aims to answer the need for smaller, less energy con-
suming security tokens as commonly used for authentication and micropayments.
Lightweight cryptographic implementations are commonly used in hardware
modules in RFID tokens, remotes, and all types of devices for the Internet of
Things (IoT). In these application scenarios the available area footprint as well
as the computation power and the battery life are heavily constrained, where the
commonly used and trusted standard ciphers like the AES are too costly. Here
comes the arena of Speck as a lightweight block cipher. For more information on
lightweight cryptography, please refer to [1].

Another major concern for embedded security solutions—besides cost—is
side-channel attacks. Given potential physical access to the device, an attacker
can collect and exploit various emanations from the electrical circuits, like elec-
tromagnetic waves, power consumption, sound or execution timings to recover
secret information [2]. Over the last decade, a vast body of work has been per-
formed to find effective methods to prevent these powerful attacks, especially the



differential power analysis (DPA) attack. Usually, the implementation is hard-
ened by adding masking or hiding countermeasures [3]. One of the promising
and fairly generic masking techniques is Threshold Implementation [4]. While
fairly expensive to apply on standard ciphers like AES [5, 6], its application to
lightweight ciphers (e.g. Simon and KATAN) comes at reasonable overheads [7,
8]. More importantly, prior work verified its postulated resistance to first-order
side-channel attacks [5, 6, 8, 7], making the introduced area overhead worthwhile.

Speck and its sister Simon are two lightweight block ciphers proposed by
NSA as versatile alternatives to the AES [9]. Speck was optimized for software
applications, while Simon was optimized for hardware applications. Speck sup-
ports various key sizes (64, 72, 96, 128, 144, 192 and 256 bits) and block sizes
(32, 48, 64, 96 and 128 bits), making it suitable candidate for a broad range of
applications. The design of Speck depends entirely on modular addition, rota-
tion and XOR in a number of rounds ranging from 22, to 34 (depending on key
and block sizes). Although Simon showed a small footprint on FPGAs (only 36
slices) [10], its throughout was not promising (3.6 Mbps). Moreover, in most IoT
applications, the infrastructure is mixed where some nodes are equipped with
low-power microcontrollers, others with dedicated hardware or even FPGAs. If
one block cipher is to be adopted in both platforms, Simon will cause a huge hit
in performance. On the other hand, Speck was optimized for software and shows
good throughput that is comparable to AES (while being more than double the
throughput of Simon) on both low-end and high-end processors [11, 9]. However,
being optimized for software, Speck was never tested on FPGA platforms, where
comes our contribution.

In this paper, we propose a bit-serialized implementation of Speck with the
aim to minimize area footprint, making it an ideal candidate for low-cost em-
bedded applications. Next, we show how the design can be converted into a
Threshold implementation to address the need for a side-channel protected cryp-
tographic core. Finally, we apply the state-of-the-art leakage detection method,
namely the TVLA test introduced in [12], to practically verify the claimed first-
order resistance of our design. To that end, our contribution is two-fold:

– We present a bit-serialized implementation of of the lightweight block cipher
Speck. This implementation style yields a highly area-efficient hardware im-
plementation on FPGAs.

– We further show that the bit-serialized implementation of Speck can be
protected against first-order side-channel analysis using the Threshold Im-
plementation technique. The design has been thoroughly tested using state-
of-the-art leakage detection methods, yet has a smaller area footprint than
many unprotected symmetric ciphers. As such, the bit serialized Threshold
Implementation of Speck (named SpecTre) provides a more secure crypto
core for embedded scenarios while still maintaining the goal of a low-cost
implementation.

It is surprising that a FPGA implementation of Speck, which was optimized
for software, requires only slightly more area than Simon which was optimized
for hardware. Meanwhile, SpecTre achieves more than double the throughput



Table 1. Speck parameters for various block and key sizes

Block Size Key Size Word Size Rounds

32 64 16 22

48 72 24 22
48 96 24 23

64 96 32 26
64 128 32 27

96 96 48 28
96 144 48 29

128 128 64 32
128 192 64 33
128 256 64 34

of Simon. Our Threshold Implementation design occupies only 99 slices on an
entry level FPGA, i.e. the Xilinx Spartan 3, while generating output at 9.68
Mbps, making it suitable for lightweight applications like wireless sensor net-
works, RFIDs, etc. We also prove the security of our design against first order
side-channel attacks by performing leakage detection tests on the SpecTre core.

The paper is organized as follows. Section 2 provides background information
on Speck block cipher, masking countermeasure and Threshold Implementations.
Section 3 details the bit-serialized implementation of Speck on FPGAs. Section 4
shows how the Threshold Implementation of Speck is designed and implemented.
Section 5 compares the implementation results against other ciphers. Section 6
discusses the experimental setup and the leakage detection test along with the
result of evaluating the protected core. The paper is concluded in Section 7.

2 Background

We introduce the Speck cipher and give some background on side-channel anal-
ysis and how they can be mitigated.

2.1 Speck Cipher:

Speck is a family of lightweight block ciphers publicly released by the NSA in
June 2013 [9]. Speck has been optimized for performance in software implemen-
tations. Like other common block ciphers, Speck supports a range of key and
block size options ranging from 64 bits to 256 bits and 32 bits to 128 bits, respec-
tively. Speck is commonly notated by the block size (2n) and key size (mn),
where n is the word size. For example, Speck32/64 has a word size of 16 bits
and works with input block size of 32 bits and key size of 64 bits. Depending on
both the key and the block size, the number of rounds range from 22 rounds to
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Fig. 1. Block diagram of the Speck cipher showing the round function

34 rounds. A detailed list of block and key size options and the resulting number
of rounds are given in Table 1.

As shown in Figure 1, the input is split into two words, each of size n. Each
round of Speck consists of bitwise XOR, an addition modulo 2n, and left and right
circular shift operations. These operations enable high throughput and efficient
implementation on most microprocessors. As we will later show, the design also
lends itself to efficient implementation in hardware. The round function can be
represented as:

xi+1 =(S−α(xi) + yi)⊕ ki
yi+1 =Sβ(yi)⊕ xi+1

(1)

where Sj is left circular shift by j bits. Note that α = 8 and β = 3, except for
the Speck32/64 toy cipher, where (α, β) = (7, 2). Notably, the exact same round
function is also used for the key scheduling. The key schedule of Speck takes
the key as input and outputs a round key for each round of the encryption by
applying the round function. In the key schedule, differently than the encryption,
the left word is XOR’ed with a constant representing the round number starting
from 0.

According to [9], Speck with block and key sizes of 128-bits requires 1396 GE
(Gate Equivalent) and produces 12.1 Kbps throughput compared to 2400 GE
and 56.6 Kbps throughput of the AES 128. In most applications, this smaller
circuit size translates into lower power consumption and more portability at
lower cost. Note that even though the throughput/area ratio of the Speck is
lower than the AES for 128-bits, it still has the advantage of being lightweight
in addition to supporting smaller block sizes.



In [11], the authors of the Simon and Speck implemented both ciphers on
a commercially available, 8-bit AVR microcontroller and compared the perfor-
mance results to other block ciphers. The results show that the both ciphers
perform well on the 8-bit test platform. Also, the Speck cipher has the best
overall performance among all tested block ciphers in software.

2.2 Differential Power Analysis and Masking Countermeasure

Differential Power Analysis (DPA) is an implementation attack that targets the
underlying implementation of a crypto algorithm rather than its mathematical
structure. DPA exploits the fact that learning even minimal information about
intermediate states of a cryptographic algorithm can result in key recovery an
hence a full break of the cryptosystem. In this attack, the adversary measures
the power consumption (or electromagnetic emanation) of the targeted platform
while it performs cryptographic operations. Based on a guess on a small part of
the secret key (subkey), the adversary can compute the hypothetical values of an
intermediate cipher state, and thus predict changes in the power consumption.
Finally, the predicted changes in power consumption are compared against the
measured power traces, where the correct subkey that results in the best match.
A detailed introduction to DPA is given in [2]. These attacks have been widely
studied, apply to virtually any implementation of cryptography, and are very
difficult to prevent [3].

One of the popular methods to thwart this attack is masking. Masking de-
pends on using a fresh random variable to blind all the intermediate variables,
hence prevents the ability to estimate correct hypothetical traces. Masking is typ-
ically achieved by splitting the input data (plaintext and/or key) into d shares
using a random variable. This countermeasure is notated as (d− 1)-order mask-
ing. Each share is processed independently to produce an output. The outputs
are then combined to retrieve the original output (ciphertext). The effect of
linear functions within a crypto algorithm can easily be re-expressed in terms
of the input shares. However, re-expressing non-linear functions is typically a
challenging task and every crypto algorithm needs a special solution.

The adversary can still break a (d − 1)-order masked implementation if he
can combine the information from all the d shares. If the d shares leak at the
same point in time, the attack is called higher-order DPA. However, if the shares
leak at different points in time, the attack is called multivariate DPA.

2.3 Threshold Implementation

Threshold Implementation (TI) is a popular method of applying masking coun-
termeasure that is provably secure against first order side-channel attacks. TI
applies the concepts of XOR-secret sharing based multiparty computation with
some basic requirements [4]. In addition to a straightforward XOR secret shar-
ing, TI requires that any sub functions operating on the shares to be correct,
non-complete and uniform. That is: the combination of the output shares must
always return the correct result, inputs to each sub-function must always exclude



at least one share, and the output shares must be uniformly distributed if the
input shares were uniform . Non-completeness enforces that the secret state is
not processed by any function within the embedded module (at least one share
will be always missing). Uniformity enforces that all the intermediate variables
within the new masked module have the same entropy of the original secret
state. This last requirement is typically the most difficult to achieve. However,
it can be achieved by introducing fresh randomness into the output state.

There are quite a few designs in the literature with Threshold Implemen-
tation countermeasure, including TI-AES [6], TI-Keccak [13] and TI-Simon [7].
Moreover, higher-order Threshold Implementations, where each sub-function ex-
cludes at least n ≥ 2 shares, can also be realized [8].

3 A Bit-Serialized Speck Hardware Core

One goal of lightweight cryptography in hardware is to minimize the area foot-
print of a block cipher implementation. However, in most scenarios, the block
size and key size enforce a lower bound for a given configuration, since each
key and state bit needs to be stored. One exception is Ktantan [14], where the
authors out-sourced the key storage to reduce the area footprint even further in
case where the key is fixed. The authors of [15] showed that the combinational
parts (i.e. the cryptographically critical part of the cipher) of their most serial-
ized (and hence smallest) implementation of Present consumed only about 5%
of the area. In general, ciphers that are fully bit-serializable can achieve the best
area footprint for a given state and key size. In [10], a-bit-serialized design of the
Simon block cipher was proposed to achieve a compact implementation. Besides
being fully bit-serialized, the implementation stores key and cipher state in shift
registers which can be efficiently implemented in FPGA slices.

Following the same concept for the Speck cipher, the arithmetic addition
between two n-bit words can be implemented as n serialized one-bit full additions
between the two corresponding-bits and the carry-bit from prior-additions. This
approach sacrifices the performance while achieving small design size since only
one-bit full adder is used instead of an n-bit adder.

Figure 2 shows the structure of the bit-serialized round function for the un-
protected Speck128/128 (128-bit block and 128-bit key size). The structure runs
for 32 rounds, where each round requires 64 clock cycles (a total of 2048 cycles).
The 128-bit input plaintext is stored into two separate 64-bit shift registers. The
left shift register represents x in Eq. 1, while the right register represents y.

The left register (x) is split into two parts to expose bit number α (=8 in
Speck128/128), which eliminates the need for a dedicated cyclic shift operation.
Instead, we directly feed the α-th-bit into the feedback function. Here, the feed-
back function of the left register accepts one bit from register x (starting from
bit number α), one bit from register y, one key bit to perform a 1-bit full adder
and an XOR. During the first α clock cycles of each round, the feedback function
feeds the least significant part of the register. Meanwhile, the old values of this
part are sequentially feed into the most-significant part waiting for their turn to
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Fig. 2. Structure of one round of-bit-serialized Speck

activate the feedback function. After α clock cycles, the feedback function feeds
the most significant part directly preparing the state register for the next round
(putting bit number α in the lead).

While processing register x, we did not use any extra storage. This was
possible because each bit of the x register is used only once. However, each bit
of the y register is used two times, one in the left feedback function (that of
register x) and one in the right feedback function (that of register y). Hence, we
had to duplicate the β (=3 in Speck128/128) most significant bits of the register
to hold the new and old values. Also, by exposing bit number (64−β = 61) and
using it directly in the feedback function, we eliminated the need for a dedicated
cyclic shift operation. Here, the feedback function of right register accepts the
output of the left feedback function (that of register x) and one bit from register
y (starting from bit number (64− β)) to perform a single XOR. The output of
this feedback function is feed to the most significant bit of register y. Note that
one copy of β duplicated bits is used to hold the old values of register y, while
the other copy holds the new values. This role is revered in the beginning of each
round.

The key schedule applies the same round function and is performed in parallel
to the encryption round function. Note that, since the round function is highly
area optimized, this does not introduce any significant area overhead.

4 Threshold Implementation of Speck

In order to minimize the cost of design while fulfilling the three properties of
Threshold Implementation, we chose to split the secrets, both the key and the
plaintext blocks, into three shares. In the following, we show how Correctness,
Non-completeness and Uniformity are achieved using three shares.

In 3-share Speck implementation, the key k and the plaintext p are split into
three shares. Two of the shares are chosen uniformly at random while the third



share is the XOR-sum of k (or p) with the two random shares

p1
$← {0, 1}n ; p2

$← {0, 1}n ; p3 = p1 ⊕ p2 ⊕ p

k1
$← {0, 1}n ; k2

$← {0, 1}n ; k3 = k1 ⊕ k2 ⊕ k
(2)

where (
$←) denotes selecting at random from the given set. This yields a uniform

and correct XOR-shared representation of the state p and key state k:

p = p1 ⊕ p2 ⊕ p3
k = k1 ⊕ k2 ⊕ k3

(3)

In each round operation, both cyclic rotation and ⊕ are linear operations which
can be performed on each share separately. The only nonlinear operation is
the full addition between two n-bit words. We used the following equations to
implement a valid TI 3-share addition. Moreover, we used-bit-serialized addition
as shown in [16] where 1-bit addition is performed in one clock cycle. Hence
a n-bit full addition will only cost a single addition circuit and n clock cycles.
Suppose, at the i-th clock cycle, the i-th-bit addition, i ∈ {0, 1, ...n − 1}, is
performed between two plaintext-bits a and b and one carry bit c as follows.

ai =ai,1 ⊕ ai,2 ⊕ ai,3
bi =bi,1 ⊕ bi,2 ⊕ bi,3
ci =ci,1 ⊕ ci,2 ⊕ ci,3

(4)

Where ai and bi are i-th-bit of the two words, ci is the i-th carry-bit and subscript
j ∈ {1, 2, 3} indicates the j-th share of each-bit. Then the three shares of the sum-
bit si and the carry-bit ci+1 can be written as follows:

si,1 =ai,1 ⊕ bi,1 ⊕ ci,1
si,2 =ai,2 ⊕ bi,2 ⊕ ci,2
si,3 =ai,3 ⊕ bi,3 ⊕ ci,3

(5)

ci+1,1 =(ai,2 · bi,2)⊕ (ai,2 · bi,3)⊕ (ai,3 · bi,2)⊕
(ai,2 · ci,2)⊕ (ai,2 · ci,3)⊕ (ai,3 · ci,2)⊕
(bi,2 · ci,2)⊕ (bi,2 · ci,3)⊕ (bi,3 · ci,2)

ci+1,2 =(ai,3 · bi,3)⊕ (ai,3 · bi,1)⊕ (ai,1 · bi,3)⊕
(ai,3 · ci,3)⊕ (ai,3 · ci,1)⊕ (ai,1 · ci,3)⊕
(bi,3 · ci,3)⊕ (bi,3 · ci,1)⊕ (bi,1 · ci,3)

ci+1,3 =(ai,1 · bi,1)⊕ (ai,1 · bi,2)⊕ (ai,2 · bi,1)⊕
(ai,1 · ci,1)⊕ (ai,1 · ci,2)⊕ (ai,2 · ci,1)⊕
(bi,1 · ci,1)⊕ (bi,1 · ci,2)⊕ (bi,2 · ci,1)

(6)



Table 2. Resource usage and Performance of Unprotected and Protected TI-Speck.
The slices in paretheses are used as shift registers.

Cipher Regs LUTs Slices Speed
(ShiftRegs) [MHz]

Speck32/64 29 58(9) 36 166
TI-Speck32/64 70 137(27) 79 123
Speck128/128 31 76(22) 43 161
TI-Speck128/128 70 181(66) 99 155

Correctness requirement of the threshold cryptography holds true and can be
verified using following equations.

si =si,1 ⊕ si,2 ⊕ si,3
ci+1 =ci+1,1 ⊕ ci+1,2 ⊕ ci+1,3

(7)

Also, it can be easily seen that each output share is independent of at least
one share of each input, hence satisfying the non-completeness requirement.
As pointed in [16], (si, ci+1) pair is uniformly distributed and hence the three
properties of Threshold Implementation are achieved.

The actual TI implementation of the above equations can be constructed
using three copies of the bit-serialized Speck shown in Figure 2 with a slight
modification. Note that the linear operations involve only one share of any input
such as rotation, computing the sum bit and exclusive OR. However, computa-
tion of each share of the carry bit requires two shares of inputs ai, bi, ci. Hence,
the regular arithmetic adder which takes three input bits ai, bi, ci in Figure2 is
replaced with a TI adder according to equations (5) and (6).

5 FPGA Implementation Results

The unprotected and the TI versions of Speck as introduced in Sections 3 and 4
are realized using Verilog and implemented on a Xilinx Spartan 3 FPGA. De-
tailed results are shown in Table 2. We chose the outdated Spartan 3 platform
to enable better comparability to related lightweight cipher designs. This com-
parison is given in Table 3. For the experiments, we implemented two versions
of Speck cipher: Speck32/64 and Speck128/128. These two versions have 22
and 32 encryption rounds respectively. The designs are synthesized using Xil-
inx ISE 14.7. The unprotected implementation of Speck32/64 requires 29 Flip-
Flops(FFs), 58 LUTs of which 9 are used as Shifter Registers (SRs), and totally
occupies 36 slices. In terms of speed, the maximum frequency of the design is
166 MHz. Its protected version requires 70 FFs, 137 LUTs and 79 slices, and it
can run at 123 MHz.

The unprotected Speck128/128 version requires 31 FFs, occupying 43 slices
and runs at 161 MHz. TI-Speck128/128 requires 70 FFs, occupying 99 slices and
can run at 155 MHz resulting in 9.68 Mbps throughput. Note that unlike some



Table 3. Comparison of area requirements and throughput on FPGAs of various block
and stream ciphers.

Cipher Slices Throughput Platform
[Mbps]

Threshold Implementation;
TI-Speck128/128 99 9.68 xc3s50
TI-Simon128/128 [7] 87 3.0 xc3s50

Unprotected Block Ciphers;
Speck128/128 43 10.05 xc3s50
Simon128/128 [10] 36 3.6 xc3s50
AES [17] 1125 215 xcv1000e
PRESENT [18] 117 28.4 xc3s50-5
Tiny XTEA-1 [19] 266 19 xc3s50-5

Stream Ciphers;
GRAIN 128 [20] 50 196 xc3s50-5
TRIVIUM [20] 50 240 xc3s50-5

other block cipher implementations on FPGAs, we did not use any block RAMs
or any other type of storage.

After obtaining the implementation results, we compared our Speck imple-
mentations to other lightweight block cipher implementations. The most com-
parable implementations to Speck and TI-Speck are the Simon variants. As
expected, Simon was optimized for hardware and can be smaller than Speck.
However, Speck achieves more than double the throughput of Simon for a mi-
nor increase in the area (7 slices for the unprotected core, and 12 slices for
the protected one). Due to the lower number of rounds, Speck also has a much
lower delay. The bit-serialized implementations of both ciphers can be protected
against side-channel attacks using the TI countermeasure at a reasonable over-
head. In terms of comparison to other TI implementations, while there are some
previous publications [7, 21, 22] and all of them have been applied to FPGAs for
side-channel evaluation, only the Simon paper [7] reported synthesis results for
FPGAs, making this the only design we can compare to.

When compared to other block ciphers, especially AES, but also lightweight
versions such as Present, it is remarkable that Speck is significantly smaller. In
fact, the side-channel protected implementation of Speck128/128 is about the
same size as a Present64/80 core without side-channel protection. Hence, Speck
(and Simon as well) make great choices for a wide range of embedded security
solutions.

When considering size and throughput, stream ciphers such as Grain and
Trivium also achieve remarkable results on FPGAs. As can be seen in Table 3,
both ciphers need slightly larger area, 50 slices instead of 43 for Speck128/128
while giving a throughput increase of a factor of 22 and 27 respectively. Although
this is correct asymptotically, stream ciphers like Trivium suffer from a warm-up
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Fig. 3. Area and performance results of various ciphers.

phase. The design must be clocked for up to 1124 cycles before the first bit can
be encrypted, resulting in high delays. This makes stream ciphers unattractive
in most IoT scenarios where payloads are small and infrequent.

6 Leakage Analysis

In this section, we show the results of leakage detection tests as applied to
the protected TI-Speck32/64 implementation following the test suite proposed
in [12]. Unlike traditional side-channel attacks, leakage detection tests are sta-
tistical tests that are designed to measure the influence of secret intermediate
variables on side-channel traces. In other words, we are not interested in full re-
covering of the secret key but only validating first order side-channel resistance.
To this goal, we show that all the intermediate variables have no significant
influence on the power consumption.



6.1 Experimental Setup

We use the Side-channel Attack Standard Evaluation Board G-II (SASEBO)
that is designed specifically to measure side-channel leakage of FPGA hardware
designs. The board contains a Virtex-5 XC5VLX30 FPGA used for cryptographic
implementation and a Spartan-3A XC3S400A FPGA for control. The analyzed
design is the TI-Speck32/64 since it has the lowest number of rounds, yet all
relevant components to ensure a meaningful analysis. After re-synthesizing the
design for Virtex-5 and loading it into the board, the board is controlled via PC
connection.

We use Tektronix DPO 5104 to measure the power consumption of the cryp-
tographic engine with high precision and sampling rate of 1 Giga-samples per
second. Then, we perform peak extractions on the original power traces in which
only the peak value at each clock cycle is picked out so that we have only a small
amount of power samples which can be processed efficiently. Speck32/64 requires
22x16 clock cycles to run the encryption and another 18 clock cycles for data
input and output. The total number of required cycles per encryption is 370.
Hence, in order to ensure that all the leakage points are extracted, we recorded
the leakage in 370 clock cycles.

6.2 Leakage Detection Tests

In order to evaluate the side-channel leakage of both the original and the TI-
Speck designs, we used a test suite [12] that is commonly used to detect leakage
of systems [23, 8, 7]. The test suite checks the leakage data under two scenarios;

– Fixed versus Random (FvR)
– Random versus Random (RvR)

The first scenario, FvR, takes two sets of leakage traces as input: one set of
traces collected with a fixed plaintext while the other set is collected with random
plaintexts. Note that the same key is used for all encryptions. The two sets are
collected in an interleaved fashion using a uniform binary random variable. Then,
for each set, the sample mean (µ) and the sample standard deviation (σ) are
calculated. Then, the Welchs t-test is performed to see if t exceeds pre-defined
threshold in order to determine whether to fail the device or not. We use the
same commonly used threshold of 4.5 [12]. The formula for the Welchs t-test is
as follows with a and b denoting the two data sets and Ni the number of traces
in set i ∈ {a, b}.

t =
µa − µb√

(σ2
a/Na) + (σ2

b/Nb))
(8)

In simple terms, the FvR test validates the hypothesis that the processing of
any secret data is statistically indistinguishable from the processing of random
data. This test is generic and assumes no particular knowledge about the running
algorithm or the underlying module. Hence, it examines the leakage of all the
intermediate variables along the algorithm.



Table 4. Side-Channel Leakages in different scenarios

Leakage Maximum Minimum Standard
Scenario t value t value deviation

FvR Unprotected 63.16 -68.81 20.74
RvR Unprotected 9.78 -9.72 2.13
FvR Protected 2.28 -4.44 1
RvR Protected 2.31 -1.97 0.82

The second scenario (RvR), uses the same analysis method but all the traces
are collected with random plaintexts and the same key. In this scenario, traces
are divided according to a chosen binary intermediate variable. This test re-
sembles a profiled attack using the original 1-bit DPA of Kocher [2]. The test
validates the hypothesis that knowledge of any internal variable does not help in
identifying leakage traces. The RvR test assumes knowledge of the key and the
target algorithm (in order to compute the intermediate variable). Although the
test does not assume any power consumption model, knowledge of the underly-
ing implementation determines if the leakage should depend on the current state
only, or on the transition between two states. In our experiment, we selected the
intermediate variable as the least significant bit of the x register after the first
round.

We would like to note that the FvR and RvR tests are stronger and far
more sensitive to side-channel leakage than SPA and DPA attacks. Their ability
to distinguish points in a leakage trace may not even result in partial or full
recovery. In these types of attacks, the adversary must be able to distinguish
a key dependent internal state from noise to actually carry out an attack and
recover partial or full information about the secret. Having said that, SPA and
DPA can be used to test the side-channel resistance of the proposed TI-Speck
and can be conducted as future research.

6.3 Results

In order to fairly compare between the two proposed designs, we used the TI-
Speck to realize both the protected and unprotected implementations. For the
unprotected implementation, we set the value of one share to the input secret
(plaintext or key) and the value of the other shares to zero. For the protected
implementation, all the three shares are set randomly. This way, we can use the
exact same script for collecting and analyzing traces.

The unprotected core is expected to leak and serves as a reference to show
that the leakage detection actually works properly in the given setup. As for the
protected core, the masks are properly randomized and no leakage should be
detected even for a high number of observations.

As noted in Table 4, the t values clearly prove that the Threshold Imple-
mentation of Speck is resistant to side-channel analysis according to the pass/-
fail criteria. More specifically, Figure 4(a) and Figure 4(c) shows the FvR tests
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Fig. 4. Side-Channel Leakage Results. The Leakage detection clearly indicates leakage
for the implementations where masking is turned off, and indicates absence of leakage
in the other cases.

for unprotected and protected implementation respectively. For unprotected im-
plementation, t values at most time moments exceed the predefined threshold
indicating that the leakage caused by fixed input can be easily distinguished
from the one of random inputs and the leakage is dependent on the sensitive
intermediate values in the unprotected core. In contrast, the lesser t values in
the protected implementation show the first order leakage caused by fixed inputs
and random inputs cannot be distinguished and exploited for a key recovery, and
the side-channel resistance of the protected TI core is validated.

The RvR tests lead to the same conclusion. Note that we use the LSB of
the left part (bit 0 in register x) after the first round operation to partition
the power traces. If the LSB is 0, all the corresponding traces are put in set
0 and otherwise in set 1. Figure 4(b) shows that t values during the first two
rounds are beyond the threshold. This is because some intermediates are related
to chosen LSB but after two rounds of operation the dependency disappear. In
other words, the leakages near the operation of the chosen intermediate values
depend on them and demonstrate the vulnerability of the unprotected imple-
mentation. In contrast, the less t in the protected core implies little dependency
between the intermediate values and the leakage, and the effectiveness of the TI
countermeasure is again validated.

7 Conclusion

In conclusion, we designed a bit-serialized version of Speck and implemented it
on FPGA. The bit-serialized Speck core is only slightly larger that a bit-serialized



Simon core—the current record-holder in smallest crypto core on FPGAs—but
improves throughput and reduces latency by a factor of 2.4 times.

We also proposed a novel Threshold Implementation of the Speck cipher with
three shares. We analyzed the power consumption of SpecTre and verified that
the three-share TI-Speck implementation is resistant to first order side-channel
attacks. Area-wise, our SpecTre design did not create a significant overhead and
stayed true to the cipher’s essence. Also, speed-wise we observed only marginal
slow down compared to the unprotected version.
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