
Conversion from Arithmetic to Boolean Masking with
Logarithmic Complexity?

Jean-Sébastien Coron1, Johann Großschädl1, Mehdi Tibouchi2, and Praveen Kumar Vadnala1

1 University of Luxembourg,
{jean-sebastien.coron,johann.groszschaedl,praveen.vadnala}@uni.lu

2 NTT Secure Platform Laboratories, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. A general technique to protect a cryptographic algorithm against side-channel attacks
consists in masking all intermediate variables with a random value. For cryptographic algorithms
combining Boolean operations with arithmetic operations, one must then perform conversions between
Boolean masking and arithmetic masking. At CHES 2001, Goubin described a very elegant algorithm
for converting from Boolean masking to arithmetic masking, with only a constant number of operations.
Goubin also described an algorithm for converting from arithmetic to Boolean masking, but with O(k)
operations where k is the addition bit size. In this paper we describe an improved algorithm with time
complexity O(log k) only. Our new algorithm is based on the Kogge-Stone carry look-ahead adder,
which computes the carry signal in O(log k) instead of O(k) for the classical ripple carry adder. We
also describe an algorithm for performing arithmetic addition modulo 2k directly on Boolean shares,
with the same complexity O(log k) instead of O(k). We prove the security of our new algorithm against
first-order attacks. Our algorithm performs well in practice, as for k = 64 we obtain a 23% improvement
compared to Goubin’s algorithm. Our solution naturally extends to higher-order countermeasures with
complexity O(n2 · log k) instead of O(n2 · k) for n shares.

1 Introduction

Side-channel attacks. Side-channel attacks belong to the genre of implementation attacks and
exploit the fact that any device performing a cryptographic algorithm leaks information related to
the secret key through certain physical phenomena such as execution time, power consumption,
EM radiation, etc. Depending on the source of the information leakage and the required post-
processing, one can distinguish different categories of side-channel attacks, e.g. timing attacks,
Simple Power Analysis (SPA) attacks, and Differential Power Analysis (DPA) attacks [KJJ99].
The former uses data-dependent (i.e. plaintext-dependent) variations in the execution time of a
cryptographic algorithm to deduce information about the secret key involved in the computation
of the ciphertext. In contrast, power analysis attacks require the attacker to measure the power
consumption of a device while it executes a cryptographic algorithm [PMO07]. To perform an SPA
attack, the attacker typically collects only one (or very few) power trace(s) and attempts to recover
the secret key by focusing on differences between patterns within a trace. A DPA attack, on the
other hand, requires many power traces and employs sophisticated statistical techniques to analyze
differences between the traces [MOP07].

Even though DPA was first described using the DES algorithm as an example, it became soon
clear that power analysis attacks can also be applied to break other secret-key algorithms, e.g.
AES as well as public-key algorithms, e.g. RSA. A DPA attack normally exploits the principle of
divide and conquer, which is possible since most block ciphers use the secret key only partially at
a given point of time. Hence, the attacker can recover one part of the key at a time by studying
the relationship between the actual power consumption and estimated power values derived from
a theoretical model of the device. During the past 15 years, dozens of papers about successful DPA
attacks on different implementations (hardware, software) of numerous secret-key cryptosystems
(block ciphers, stream ciphers, keyed-hash message authentication codes) have been published. The
experiments described in these papers confirm the real-world impact of DPA attacks in the sense

? An extended abstract will appear at FSE 2015; this is the full version.



that unprotected (or insufficiently protected) implementations of cryptographic algorithms can be
broken in relatively short time using relatively cheap equipment.

The vast number of successful DPA attacks reported in the literature has initiated a large body
of research on countermeasures. From a high-level point of view, countermeasures against DPA
attacks can be divided into hiding (i.e. decreasing the signal-to-noise ratio) and masking (i.e. ran-
domizing all the sensitive data) [MOP07]. Approaches to hiding-style countermeasures attempt to
“equalize” the power consumption profile (i.e. making the power consumption invariant for all pos-
sible values of the secret key) or to randomize the power consumption so that a profile can no longer
be correlated to any secret information. Masking, on the other hand, conceals every key-dependent
intermediate result with a random value, the so-called mask, in order to break the dependency
between the sensitive variable (i.e. involving the secret key) and the power consumption.

The masking countermeasure. Though masking is often considered to be less efficient (in terms
of execution time) than hiding, it provides the key benefit that one can formally prove its security
under certain assumptions on the device leakage model and the attacker’s capabilities. The way
masking is applied depends on the concrete operations executed by a cipher. In general, logical oper-
ations (e.g. XOR, Shift, etc.) are protected using Boolean masking, whereas additions/subtractions
and multiplications require arithmetic and multiplicative masking, respectively. When a crypto-
graphic algorithm involves a combination of these operations, it becomes necessary to convert the
masks from one form to the other in order to get the correct result. Examples of algorithms that
perform both arithmetic (e.g. modular addition) and logical operations include two SHA-3 finalists
(namely Blake and Skein) as well as all four stream ciphers in the eSTREAM software portfolio.
Also, ARX-based block ciphers (e.g. XTEA [NW97] and Threefish) and the hash functions SHA-1
and SHA-2 fall into this category. From a design point of view, modular addition gives essential
non-linearity with increased throughput and hence is used in several lightweight block ciphers e.g.
SPECK [BSS+13]. Therefore, techniques for conversion between Boolean and arithmetic masks are
of significant practical importance.

Conversion between Boolean and arithmetic masking. At CHES 2001, Goubin described
a very elegant algorithm for converting from Boolean masking to arithmetic masking, with only a
constant number of operations, independent of the addition bit size k. Goubin also described an
algorithm for converting from arithmetic to Boolean masking, but with O(k) operations. A different
arithmetic to Boolean conversion algorithm was later described in [CT03], based on precomputed
tables; an extension was described in [NP04] to reduce the memory consumption. At CHES 2012,
Debraize described a modification of the table-based conversion in [CT03], correcting a bug and
improving time performances, still with asymptotic complexity O(k).

Karroumi et al. recently noticed in [KRJ14] that Goubin’s recursion formula for converting from
arithmetic to Boolean masking can also be used to compute an arithmetic addition z = x+y mod 2k

directly with masked shares x = x1⊕x2 and y = y1⊕y2. The advantage of this method is that one
doesn’t need to follow the three step process, i.e. converting x and y from Boolean to arithmetic
masking, then performing the addition with arithmetic masks and then converting back from
arithmetic to Boolean masks. The authors showed that this can lead to better performances in
practice for the block cipher XTEA. However, as their algorithm is based on Goubin’s recursion
formula, its complexity is still O(k).

Conversion algorithms have recently been extended to higher-order countermeasure in [CGV14],
based on Goubin’s conversion method. For security against any attack of order t, their solution
has time complexity O(n2 · k) for n = 2t+ 1 shares.

New algorithms with logarithmic complexity. In this paper we describe a new algorithm
for converting from arithmetic to Boolean masking with complexity O(log k) instead of O(k).
Our algorithm is based on the Kogge-Stone carry look-ahead adder [KS73], which computes the



carry signal in O(log k) instead of O(k) for the classical ripple carry adder. Following [BN05]
and [KRJ14] we also describe a variant algorithm for performing arithmetic addition modulo 2k

directly on Boolean shares, with complexity O(log k) instead of O(k). We prove the security of
our new algorithms against first-order attacks. Our improved solution naturally extends to higher-
order masking and reduces the time complexity for n shares from O(n2 · k) in [CGV14] down to
O(n2 log k).

We also provide implementation results for our algorithms along with existing algorithms on
a 32-bit microcontroller. Our results show that the new algorithms perform better than Goubin’s
algorithm for k ≥ 32, as we obtain 14% improvement in execution time for k = 32, and 23%
improvement for k = 64. We also describe our results for first-order secure implementations of
HMAC-SHA-1 (k = 32) and of the SPECK block-cipher (k = 64).

2 Goubin’s Algorithms

In this section we first recall Goubin’s algorithm for converting from Boolean masking to arithmetic
masking and conversely [Gou01], secure against first-order attacks. Given a k-bit variable x, for
Boolean masking we write:

x = x′ ⊕ r

where x′ is the masked variable and r ← {0, 1}k. Similarly for arithmetic masking we write

x = A+ r mod 2k

In the following all additions and subtractions are done modulo 2k, for some parameter k.

The goal of the paper is to describe efficient conversion algorithms between Boolean and arith-
metic masking, secure against first-order attacks. Given x′ and r, one should compute the arithmetic
mask A = (x′ ⊕ r) − r mod 2k without leaking information about x = x′ ⊕ r; this implies that
one cannot compute A = (x′ ⊕ r) − r mod 2k directly, as this would leak information about the
sensitive variable x = x′ ⊕ r; instead all intermediate variables should be properly randomized so
that no information is leaked about x. Similarly given A and r one must compute the Boolean
mask x′ = (A+ r)⊕ r without leaking information about x = A+ r.

2.1 Boolean to Arithmetic Conversion

We first recall the Boolean to arithmetic conversion algorithm from Goubin [Gou01]. One considers
the following function Ψx′(r) : F2k → F2k :

Ψx′(r) = (x′ ⊕ r)− r

Theorem 1 (Goubin [Gou01]). The function Ψx′(r) = (x′ ⊕ r)− r is affine over F2.

Using this affine property, the conversion from Boolean to arithmetic masking is straightfor-
ward. Given x′, r ∈ F2k we must compute A such that x′ ⊕ r = A+ r. From the affine property of
Ψx′(r) we can write:

A = (x′ ⊕ r)− r = Ψx′(r) = Ψx′(r ⊕ r2)⊕
(
Ψx′(r2)⊕ Ψx′(0)

)
for any r2 ∈ F2k . Therefore the technique consists in first generating a uniformly distributed random
r2 in F2k , then computing Ψx′(r⊕ r2) and Ψx′(r2)⊕Ψx′(0) separately, and finally performing XOR
operation on these two to get A. The technique is clearly secure against first-order attacks; namely
the left term Ψx′(r ⊕ r2) is independent from r and therefore from x = x′ ⊕ r, and the right term
Ψx′(r2) ⊕ Ψx′(0) is also independent from r and therefore from x. Note that the technique is very
efficient as it requires only a constant number of operations (independent of k).



2.2 From Arithmetic to Boolean Masking

Goubin also described in [Gou01] a technique for converting from arithmetic to Boolean masking,
secure against first-order attacks. However it is more complex than from Boolean to arithmetic
masking; its complexity is O(k) for additions modulo 2k. It is based on the following theorem.

Theorem 2 (Goubin [Gou01]). If we denote x′ = (A + r) ⊕ r, we also have x′ = A ⊕ uk−1,
where uk−1 is obtained from the following recursion formula:{

u0 = 0
∀k ≥ 0, uk+1 = 2[uk ∧ (A⊕ r)⊕ (A ∧ r)] (1)

Since the iterative computation of ui contains only XOR and AND operations, it can easily be
protected against first-order attacks. We refer to Appendix A for the full conversion algorithm.

3 A New Recursive Formula based on Kogge-Stone Adder

Our new conversion algorithm is based on the Kogge-Stone adder [KS73], a carry look-ahead adder
that generates the carry signal in O(log k) time, when addition is performed modulo 2k. In this
section we first recall the classical ripple-carry adder, which generates the carry signal in O(k)
time, and we show how Goubin’s recursion formula (1) can be derived from it. The derivation of
our new recursion formula from the Kogge-Stone adder will proceed similarly.

3.1 The Ripple-Carry Adder and Goubin’s Recursion Formula

We first recall the classical ripple-carry adder. Given three bits x, y and c, the carry c′ for x+y+ c
can be computed as c′ = (x ∧ y)⊕ (x ∧ c)⊕ (y ∧ c). Therefore, the modular addition of two k-bit
variables x and y can be defined recursively as follows:

(x+ y)(i) = x(i) ⊕ y(i) ⊕ c(i) (2)

for 0 ≤ i < k, where{
c(0) = 0

∀i ≥ 1, c(i) = (x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1)) (3)

where x(i) represents the ith bit of the variable x, with x(0) being the least significant bit.
In the following, we show how recursion (3) can be computed directly with k-bit values instead

of bits, which enables us to recover Goubin’s recursion (1). For this, we define the sequences xj , yj
and vj whose j + 1 least significant bits are the same as x, y and c respectively:

xj =

j⊕
i=0

2ix(i), yj =

j⊕
i=0

2iy(i), vj =

j⊕
i=0

2ic(i) (4)

for 0 ≤ j ≤ k − 1. Since c(0) = 0 we can actually start the summation for vj at i = 1; we get from
(3):

vj+1 =

j+1⊕
i=1

2ic(i)

vj+1 =

j+1⊕
i=1

2i
(

(x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1))
)

vj+1 = 2

j⊕
i=0

2i
(

(x(i) ∧ y(i))⊕ (x(i) ∧ c(i))⊕ (c(i) ∧ y(i))
)

vj+1 = 2
(
(xj ∧ yj)⊕ (xj ∧ vj)⊕ (yj ∧ vj)

)



which gives the recursive equation:{
v0 = 0
∀j ≥ 0, vj+1 = 2 (vj ∧ (xj ⊕ yj)⊕ (xj ∧ yj))

(5)

Therefore we have obtained a recursion similar to (3), but with k-bit values instead of single bits.
Note that from the definition of vj in (4) the variables vj and vj+1 have the same least significant
bits from bit 0 to bit j, which is not immediately obvious when considering only recursion (5).
Combining (2) and (4) we obtain xj + yj = xj ⊕ yj ⊕ vj for all 0 ≤ j ≤ k − 1. For k-bit values x
and y, we have x = xk−1 and y = yk−1, which gives:

x+ y = x⊕ y ⊕ vk−1

We now define the same recursion as (5), but with constant x, y instead of xj , yj . That is, we
let {

u0 = 0
∀j ≥ 0, uj+1 = 2 (uj ∧ (x⊕ y)⊕ (x ∧ y))

(6)

which is exactly the same recursion as Goubin’s recursion (1). It is easy to show inductively that
the variables uj and vj have the same least significant bits, from bit 0 to bit j. Let us assume that
this is true for uj and vj . From recursions (5) and (6) we have that the least significant bits of vj+1

and uj+1 from bit 0 to bit j + 1 only depend on the least significant bits from bit 0 to bit j of vj ,
xj and yj , and of uj , x and y respectively. Since these are the same, the induction is proved.

Eventually for k-bit registers we have uk−1 = vk−1, which proves Goubin’s recursion formula
(1), namely:

x+ y = x⊕ y ⊕ uk−1
As mentioned previously, this recursion formula requires k − 1 iterations on k-bit registers. In the
following, we describe an improved recursion based on the Kogge-Stone carry look-ahead adder,
requiring only log2 k iterations.

3.2 The Kogge-Stone Carry Look-Ahead Adder

In this section we first recall the general solution from [KS73] for first-order recurrence equations;
the Kogge-Stone carry look-ahead adder is a direct application.

General first-order recurrence equation. We consider the following recurrence equation:{
z0 = b0
∀i ≥ 1, zi = aizi−1 + bi

(7)

We define the function Q(m,n) for m ≥ n:

Q(m,n) =

m∑
j=n

 m∏
i=j+1

ai

 bj (8)

We have Q(0, 0) = b0 = z0, Q(1, 0) = a1b0 + b1 = z1, and more generally:

Q(m, 0) =

m−1∑
j=0

 m∏
i=j+1

ai

 bj + bm

= am

m−1∑
j=0

 m−1∏
i=j+1

ai

 bj + bm = amQ(m− 1, 0) + bm



Therefore the sequence Q(m, 0) satisfies the same recurrence as zm, which implies Q(m, 0) = zm
for all m ≥ 0. Moreover we have:

Q(2m− 1, 0) =
2m−1∑
j=0

2m−1∏
i=j+1

ai

 bj

=

2m−1∏
j=m

aj

m−1∑
j=0

 m−1∏
i=j+1

ai

 bj +

2m−1∑
j=m

2m−1∏
i=j+1

ai

 bj

which gives the recursive doubling equation:

Q(2m− 1, 0) =

2m−1∏
j=m

aj

Q(m− 1, 0) +Q(2m− 1,m)

where each term Q(m− 1, 0) and Q(2m− 1,m) contain only m terms ai and bi, instead of 2m in
Q(2m − 1, 0). Therefore the two terms can be computed in parallel. This is also the case for the
product

∏2m−1
j=m aj which can be computed with a product tree. Therefore by recursive splitting

with N processors, the sequence element zN can be computed in time O(log2N), instead of O(N)
with a single processor.

The Kogge-Stone Carry Look-Ahead Adder. The Kogge-Stone carry look-ahead adder
[KS73] is a direct application of the previous technique. Namely writing ci = c(i), ai = x(i) ⊕ y(i)
and bi = x(i) ∧ y(i) for all i ≥ 0, we obtain from (3) the recurrence relation for the carry signal ci:{

c0 = 0
∀i ≥ 1, ci = (ai−1 ∧ ci−1)⊕ bi−1

which is similar to (7), where ∧ is the multiplication and ⊕ the addition. We can therefore compute
the carry signal ci for 0 ≤ i < k in time O(log k) instead of O(k).

More precisely, the Kogge-Stone carry look-ahead adder can be defined as follows. For all
0 ≤ j < k one defines the sequence of bits:

P0,j = x(j) ⊕ y(j), G0,j = x(j) ∧ y(j) (9)

and the following recursive equations:{
Pi,j = Pi−1,j ∧ Pi−1,j−2i−1

Gi,j = (Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j
(10)

for 2i−1 ≤ j < k, and Pi,j = Pi−1,j and Gi,j = Gi−1,j for 0 ≤ j < 2i−1. The following lemma shows
that the carry signal cj can be computed from the sequence Gi,j .

Lemma 1. We have (x + y)(j) = x(j) ⊕ y(j) ⊕ cj for all 0 ≤ j < k where the carry signal cj is
computed as c0 = 0, c1 = G0,0 and cj+1 = Gi,j for 2i−1 ≤ j < 2i.

To compute the carry signal up to ck−1, one must therefore compute the sequences Pi,j and
Gi,j up to i = dlog2(k − 1)e. For completeness we provide the proof of Lemma 1 in Appendix B.

3.3 Our New Recursive Algorithm

We now derive a recursion formula with k-bit variables instead of single bits; we proceed as in
Section 3.1, using the more efficient Kogge-Stone carry look-ahead algorithm, instead of the classical
ripple-carry adder for Goubin’s recursion. We prove the following theorem, analogous to Theorem
2, but with complexity O(log k) instead of O(k). Given a variable x, we denote by x � ` the
variable x left-shifted by ` bits, keeping only k bits in total.



Theorem 3. Let x, y ∈ {0, 1}k and n = dlog2(k − 1)e. Define the sequence of k-bit variables Pi

and Gi, with P0 = x⊕ y and G0 = x ∧ y, and{
Pi = Pi−1 ∧ (Pi−1 � 2i−1)
Gi =

(
Pi−1 ∧ (Gi−1 � 2i−1)

)
⊕Gi−1

(11)

for 1 ≤ i ≤ n. Then x+ y = x⊕ y ⊕ (2Gn).

Proof. We start from the sequences Pi,j and Gi,j defined in Section 3.2 corresponding to the Kogge-
Stone carry look-ahead adder, and we proceed as in Section 3.1. We define the variables:

Pi :=

k−1∑
j=2i−1

2jPi,j Gi :=

k−1∑
j=0

2jGi,j

which from (9) gives the initial condition P0 = x⊕ y and G0 = x ∧ y, and using (10):

Pi =
k−1∑

j=2i−1

2jPi,j =
k−1∑

j=2i−1

2j(Pi−1,j ∧ Pi−1,j−2i−1)

=

 k−1∑
j=2i−1

2jPi−1,j

 ∧
 k−1∑

j=2i−1

2jPi−1,j−2i−1


We can start the summation of the Pi,j bits with j = 2i−1 − 1 instead of 2i − 1, because the other
summation still starts with j = 2i−1, hence the corresponding bits are ANDed with 0. This gives:

Pi =

 k−1∑
j=2i−1−1

2jPi−1,j

 ∧
 k−1∑

j=2i−1

2jPi−1,j−2i−1


= Pi−1 ∧

k−1−2i−1∑
j=2i−1−1

2j+2i−1
Pi−1,j

 = Pi−1 ∧ (Pi−1 � 2i−1)

Hence we get the same recursion formula for Pi as in (11). Similarly we have using (10):

Gi =
k−1∑
j=0

2jGi,j =
k−1∑

j=2i−1

2j
(
(Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j

)
+

2i−1−1∑
j=0

2jGi−1,j

=

 k−1∑
j=2i−1

2j
(
Pi−1,j ∧Gi−1,j−2i−1

)⊕Gi−1

=
(
Pi−1 ∧ (Gi−1 � 2i−1)

)
⊕Gi−1

Therefore we obtain the same recurrence for Pi and Gi as (11). Since from Lemma 1 we have that
cj+1 = Gi,j for all 2i−1 ≤ j < 2i, and Gi,j = Gi−1,j for 0 ≤ j < 2i−1, we obtain cj+1 = Gi,j for all
0 ≤ j < 2i. Taking i = n = dlog2(k− 1)e, we obtain cj+1 = Gn,j for all 0 ≤ j ≤ k− 2 < k− 1 ≤ 2n.
This implies:

k−1∑
j=0

2jcj =

k−1∑
j=1

2jcj = 2

k−2∑
j=0

2jcj+1 = 2

k−2∑
j=0

2jGn,j = 2Gn

Since from Lemma 1 we have (x + y)(j) = x(j) ⊕ y(j) ⊕ cj for all 0 ≤ j < k, this implies x + y =
x⊕ y ⊕ (2Gn) as required. ut



The complexity of the previous recursion is only O(log k), as opposed to O(k) with Goubin’s
recursion. The sequence can be computed using the algorithm below; note that we do not compute
the last element Pn since it is not used in the computation of Gn. Note also that the algorithm
below could be used as a O(log k) implementation of arithmetic addition z = x + y mod 2k for
processors having only Boolean operations.

Algorithm 1 Kogge-Stone Adder

Input: x, y ∈ {0, 1}k, and n = max(dlog2(k − 1)e, 1).
Output: z = x+ y mod 2k

1: P ← x⊕ y
2: G← x ∧ y
3: for i := 1 to n− 1 do
4: G← (P ∧ (G� 2i−1))⊕G
5: P ← P ∧ (P � 2i−1)
6: end for
7: G← (P ∧ (G� 2n−1))⊕G
8: return x⊕ y ⊕ (2G)

4 Our New Conversion Algorithm

Our new conversion algorithm from arithmetic to Boolean masking is a direct application of the
Kogge-Stone adder in Algorithm 1. We are given as input two arithmetic shares A, r of x =
A+ r mod 2k, and we must compute x′ such that x = x′⊕ r, without leaking information about x.

Since Algorithm 1 only contains Boolean operations, it is easy to protect against first-order
attacks. Assume that we give as input the two arithmetic shares A and r to Algorithm 1; the
algorithm first computes P = A ⊕ r and G = A ∧ r, and after n iterations outputs x = A + r =
A⊕ r ⊕ (2G). Obviously one cannot compute P = A⊕ r and G = A ∧ r directly since that would
reveal information about the sensitive variable x = A + r. Instead we protect all intermediate
variables with a random mask s using standard techniques, that is we only work with P ′ = P ⊕ s
and G′ = G ⊕ s. Eventually we obtain a masked x′ = x ⊕ s as required, in time O(log k) instead
of O(k).

4.1 Secure Computation of AND

Since Algorithm 1 contains AND operations, we first show how to secure the AND operation
against first-order attacks. The technique is essentially the same as in [ISW03]. With x = x′ ⊕ s
and y = y′ ⊕ t for two independent random masks s and t, we have for any u:

(x ∧ y)⊕ u =
(
(x′ ⊕ s) ∧ (y′ ⊕ t)

)
⊕ u = (x′ ∧ y′)⊕ (x′ ∧ t)⊕ (s ∧ y′)⊕ (s ∧ t)⊕ u

Algorithm 2 SecAnd
Input: x′, y′, s, t, u such that x′ = x⊕ s and y′ = y ⊕ t.
Output: z′ such that z′ = (x ∧ y)⊕ u.
1: z′ ← u⊕ (x′ ∧ y′)
2: z′ ← z′ ⊕ (x′ ∧ t)
3: z′ ← z′ ⊕ (s ∧ y′)
4: z′ ← z′ ⊕ (s ∧ t)
5: return z′

We see that the SecAnd algorithm requires 8 Boolean operations. The following Lemma shows
that the SecAnd algorithm is secure against first-order attacks.



Lemma 2. When s, t and u are uniformly and independently distributed in F2k , all intermediate
variables in the SecAnd algorithm have a distribution independent from x and y.

Proof. Since s and t are uniformly and independently distributed in F2k , the variables x′ = x⊕ s
and y′ = y⊕ t are also uniformly and independently distributed in F2k . Therefore the distribution
of x′ ∧ y′ is independent from x and y. The same holds for the variables x′ ∧ t, s ∧ y′ and s ∧ t.
Moreover since u is uniformly distributed in F2k , the distribution of z′ from Line 1 to Line 4 is
uniform in F2k ; hence its distribution is also independent from x and y. ut

4.2 Secure Computation of XOR

Similarly we show how to secure the XOR computation of Algorithm 1. With x = x′ ⊕ s and
y = y′ ⊕ u where s and u are two independent masks, we have:

(x⊕ y)⊕ s = x′ ⊕ s⊕ y′ ⊕ u⊕ s = x′ ⊕ y′ ⊕ u

Algorithm 3 SecXor
Input: x′, y′, u, such that x′ = x⊕ s, and y′ = y ⊕ u.
Output: z′ such that z′ = (x⊕ y)⊕ s.
1: z′ ← x′ ⊕ y′
2: z′ ← z′ ⊕ u
3: return z′

We see that the SecXor algorithm requires 2 Boolean operations. The following Lemma shows
that the SecXor algorithm is secure against first-order attacks. It is easy to see that all the in-
termediate variables in the algorithm are uniformly distributed in F2k , and hence the proof is
straightforward.

Lemma 3. When s and u are uniformly and independently distributed in F2k , all intermediate
variables in the SecXor algorithm have a distribution independent from x and y.

4.3 Secure Computation of Shift

Finally we show how to secure the Shift operation in Algorithm 1 against first-order attacks. With
x = x′ ⊕ s, we have for any t:

(x� j)⊕ t =
(
(x′ ⊕ s)� j

)
⊕ t = (x′ � j)⊕ (s� j)⊕ t

This gives the following algorithm.

Algorithm 4 SecShift
Input: x′, s, t and j such that x′ = x⊕ s and j > 0.
Output: y′ such that y′ = (x� j)⊕ t.
1: y′ ← t⊕ (x′ � j)
2: y′ ← y′ ⊕ (s� j)
3: return y′

We see that the SecShift algorithm requires 4 Boolean operations. The following Lemma shows
that the SecShift algorithm is secure against first-order attacks. The proof is straightforward so we
omit it.

Lemma 4. When s and t are uniformly and independently distributed in F2k , all intermediate
variables in the SecShift algorithm have a distribution independent from x.



4.4 Our New Conversion Algorithm

Finally we can convert Algorithm 1 into a first-order secure algorithm by protecting all intermediate
variables with a random mask; see Algorithm 5 below.

Since the SecAnd subroutine requires 8 operations, the SecXor subroutine requires 2 operations,
and the SecShift subroutine requires 4 operations, lines 7 to 11 require 2 · 8 + 2 · 4 + 2 + 2 = 28
operations, hence 28 · (n− 1) operations for the main loop. The total number of operations is then
7 + 28 · (n− 1) + 4 + 8 + 2 + 4 = 28 · n− 3. In summary, for a register size k = 2n the number of
operations is 28 · log2 k−3, in addition to the generation of 3 random numbers. Note that the same
random numbers s, t and u can actually be used for all executions of the conversion algorithm in a
given execution. The following Lemma proves the security of our new conversion algorithm against
first-order attacks.

Lemma 5. When r is uniformly distributed in F2k , any intermediate variable in Algorithm 5 has
a distribution independent from x = A+ r mod 2k.

Proof. The proof is based on the previous lemma for SecAnd, SecXor and SecShift, and also the fact
that all intermediate variables from Line 2 to 5 and in lines 12, 13, 18, and 19 have a distribution
independent from x. Namely (A⊕ t)∧ r and t∧ r have a distribution independent from x, and the
other intermediate variables have the uniform distribution. ut

Algorithm 5 Kogge-Stone Arithmetic to Boolean Conversion

Input: A, r ∈ {0, 1}k and n = max(dlog2(k − 1)e, 1)
Output: x′ such that x′ ⊕ r = A+ r mod 2k.
1: Let s← {0, 1}k, t← {0, 1}k, u← {0, 1}k.
2: P ′ ← A⊕ s
3: P ′ ← P ′ ⊕ r . P ′ = (A⊕ r)⊕ s = P ⊕ s
4: G′ ← s⊕

(
(A⊕ t) ∧ r

)
5: G′ ← G′ ⊕ (t ∧ r) . G′ = (A ∧ r)⊕ s = G⊕ s
6: for i := 1 to n− 1 do
7: H ← SecShift(G′, s, t, 2i−1) . H = (G� 2i−1)⊕ t
8: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2i−1)

)
⊕ u

9: G′ ← SecXor(G′, U, u) . G′ =
(
(P ∧ (G� 2i−1))⊕G

)
⊕ s

10: H ← SecShift(P ′, s, t, 2i−1) . H = (P � 2i−1)⊕ t
11: P ′ ← SecAnd(P ′, H, s, t, u) . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ u

12: P ′ ← P ′ ⊕ s
13: P ′ ← P ′ ⊕ u . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ s

14: end for
15: H ← SecShift(G′, s, t, 2n−1) . H = (G� 2n−1)⊕ t
16: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2n−1)

)
⊕ u

17: G′ ← SecXor(G′, U, u) . G′ =
(
(P ∧ (G� 2n−1))⊕G

)
⊕ s

18: x′ ← A⊕ 2G′ . x′ = (A+ r)⊕ r ⊕ 2s
19: x′ ← x′ ⊕ 2s . x′ = (A+ r)⊕ r
20: return x′

5 Addition Without Conversion

Beak and Noh proposed a method to mask the ripple carry adder in [BN05]. Similarly, Karroumi et
al. [KRJ14] used Goubin’s recursion formula (1) to compute an arithmetic addition z = x+y mod 2k

directly with masked shares x′ = x ⊕ s and y′ = y ⊕ r, that is without first converting x and y
from Boolean to arithmetic masking, then performing the addition with arithmetic masks, and
then converting back from arithmetic to Boolean masks. They showed that this can lead to better
performances in practice for the block cipher XTEA.

In this section we describe an analogous algorithm for performing addition directly on the
masked shares, based on the Kogge-Stone adder instead of Goubin’s formula, to get O(log k)



complexity instead of O(k). More precisely, we receive as input the shares x′, y′ such that x′ = x⊕s
and y′ = y ⊕ r, and the goal is to compute z′ such that z′ = (x + y) ⊕ r. For this it suffices to
perform the addition z = x+y mod 2k as in Algorithm 1, but with the masked variables x′ = x⊕s
and y′ = y ⊕ r instead of x, y, while protecting all intermediate variables with a Boolean mask;
this is straightforward since Algorithm 1 contains only Boolean operations; see Algorithm 6 below.

Algorithm 6 Kogge-Stone Masked Addition

Input: x′, y′, r, s ∈ {0, 1}k and n = max(dlog2(k − 1)e, 1).
Output: z′ such that z′ = (x+ y)⊕ r, where x = x′ ⊕ s and y = y′ ⊕ r
1: Let t← {0, 1}k, u← {0, 1}k.
2: P ′ ← SecXor(x′, y′, r) . P ′ = (x⊕ y)⊕ s = P ⊕ s
3: G′ ← SecAnd(x′, y′, s, r, u) . G′ = (x ∧ y)⊕ u = G⊕ u
4: G′ ← G′ ⊕ s
5: G′ ← G′ ⊕ u . G′ = (x ∧ y)⊕ s = G⊕ s
6: for i := 1 to n− 1 do
7: H ← SecShift(G′, s, t, 2i−1) . H = (G� 2i−1)⊕ t
8: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2i−1)

)
⊕ u

9: G′ ← SecXor(G′, U, u) . G′ =
(
(P ∧ (G� 2i−1))⊕G

)
⊕ s

10: H ← SecShift(P ′, s, t, 2i−1) . H = (P � 2i−1)⊕ t
11: P ′ ← SecAnd(P ′, H, s, t, u) . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ u

12: P ′ ← P ′ ⊕ s
13: P ′ ← P ′ ⊕ u . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ s

14: end for
15: H ← SecShift(G′, s, t, 2n−1) . H = (G� 2n−1)⊕ t
16: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2n−1)

)
⊕ u

17: G′ ← SecXor(G′, U, u) . G′ =
(
(P ∧ (G� 2n−1))⊕G

)
⊕ s

18: z′ ← SecXor(y′, x′, s) . z′ = (x⊕ y)⊕ r
19: z′ ← z′ ⊕ (2G′) . z′ = (x+ y)⊕ 2s⊕ r
20: z′ ← z′ ⊕ 2s . z′ = (x+ y)⊕ r
21: return z′

As previously the main loop requires 28 · (n − 1) operations. The total number of operations
is then 12 + 28 · (n − 1) + 20 = 28 · n + 4. In summary, for a register size k = 2n the number of
operations is 28 · log2 k + 4, with additionally the generation of 2 random numbers; as previously
those 2 random numbers along with r and s can be reused for subsequent additions within the same
execution. The following Lemma proves the security of Algorithm 6 against first-order attacks. The
proof is similar to the proof of Lemma 5 and is therefore omitted.

Lemma 6. For a uniformly and independently distributed randoms r ∈ {0, 1}k and s ∈ {0, 1}k,
any intermediate variable in the Kogge-Stone Masked Addition has the uniform distribution.

6 Extension to Higher-Order Masking

The first conversion algorithms between Boolean and arithmetic masking secure against t-th order
attack (instead of first-order only) were presented in [CGV14]. The authors first described an
algorithm for secure addition modulo 2k directly with n Boolean shares (where n ≥ 2t + 1), with
complexity O(n2 ·k). The algorithm was then used as a subroutine to obtain conversion algorithms
in both directions, again with complexity O(n2 ·k). The algorithms were proven secure in the ISW
framework for private circuits [ISW03].

Our improved solution is easily adapted to obtain addition modulo 2k and conversion algorithms
with complexity O(n2 · log k) instead of O(n2 ·k). Namely within [CGV14] it suffices to replace the
O(k) Goubin’s addition from Theorem 2 by the O(log k) Kogge-Stone addition from Theorem 3.
The resulting algorithms are still proven secure in the ISW framework.



7 Analysis and Implementation

7.1 Comparison With Existing Algorithms

We compare in Table 1 the complexity of our new algorithms with Goubin’s algorithms and De-
braize’s algorithms for various addition bit sizes k.1 We give the number of random numbers
required for each of the algorithms as well the number of elementary operations. Goubin’s orig-
inal conversion algorithm from arithmetic to Boolean masking required 5k + 5 operations and a
single random generation. This was recently improved by Karroumi et al. down to 5k + 1 opera-
tions [KRJ14]. The authors also provided an algorithm to compute first-order secure addition on
Boolean shares using Goubin’s recursion formula, requiring 5k+ 8 operations and a single random
generation. See Appendix A for more details. On the other hand Debraize’s algorithm requires
19(k/`)− 2 operations with a lookup table of size 2` and the generation of two randoms.

Algorithm rand k = 8 k = 16 k = 32 k = 64 k

Goubin’s A→B conversion 1 41 81 161 321 5k + 1

Debraize’s A→B conversion (` = 4) 2 36 74 150 302 19(k/4)− 2

Debraize’s A→B conversion (` = 8) 2 - 36 74 150 19(k/8)− 2

New A→B conversion 3 81 109 137 165 28 log2 k − 3

Goubin’s addition [KRJ14] 1 48 88 168 328 5k + 8

New addition 2 88 116 144 172 28 log2 k + 4

Table 1. Number of randoms (rand) and elementary operations required for Goubin’s algorithms, Debraize’s algo-
rithm and our new algorithms for various values of k.

We see that our algorithms outperform Goubin’s algorithms for k ≥ 32 but are slower than De-
braize’s algorithm with ` = 8 (without taking into account its pre-computation phase). In practice,
most cryptographic constructions performing arithmetic operations use addition modulo 232; for
example HMAC-SHA-1 [NIS95] and XTEA [NW97]. There also exists cryptographic constructions
with additions modulo 264, for example Threefish used in the hash function Skein, a SHA-3 finalist,
and the SPECK block-cipher (see Section 9).

7.2 Practical Implementation

We have implemented our new algorithms along with Goubin’s algorithms; we have also imple-
mented the table-based arithmetic to Boolean conversion algorithm described by Debraize in
[Deb12]. For Debraize’s algorithm, we considered two possibilities for the partition of the data,
with word length ` = 4 and ` = 8. Our implementations were done on a 32-bit AVR microcon-
troller AT32UC3A0512, based on RISC microprocessor architecture. It can run at frequencies up
to 66 MHZ and has SRAM of size 64 KB along with a flash of 512 KB. We used the C program-
ming language and the machine code was produced using the AVR-GCC compiler with further
optimization (e.g. loop unrolling). For the generation of random numbers we used a pseudorandom
number generator based on linear feedback shift registers. 2

The results are summarized in Table 2. We can see that our new algorithms perform better
than Goubin’s algorithms from k = 32 onward. When k = 32, our algorithms perform roughly
14% better than Goubin’s algorithms. Moreover, our conversion algorithm performs 7% better
than Debraize’s algorithm (` = 4). For k = 64, we can see even better improvement i.e., 23%
faster than Goubin’s algorithm and 22% better than Debraize’s algorithm (` = 4). On the other

1 For Debraize’s algorithm the operation count does not involve the precomputation phase. In case of k = 8 and
` = 8 the result can be obtained by a single table look-up.

2 Note that the reported results have strong dependency on the RNG and hence can change if a different RNG is
used.



hand, Debraize’s algorithm performs better than our algorithms for ` = 8 ; however as opposed to
Debraize’s algorithm our conversion algorithm requires neither preprocessing nor extra memory.

k = 8 k = 16 k = 32 k = 64 Prep. Mem.

Goubin’s A→B conversion 180 312 543 1672 - -

Debraize’s A→B conversion (` = 4) 149 285 505 1573 1221 32

Debraize’s A→B conversion (` = 8) - 193 316 846 18024 1024

New A→B conversion 301 386 467 1284 - -

Goubin’s addition [KRJ14] 235 350 582 1789 - -

New addition 344 429 513 1340 - -

Table 2. Number of clock cycles on a 32-bit processor required for Goubin’s conversion algorithm, Debraize’s
conversion algorithm, our new conversion algorithm, Goubin’s addition from [KRJ14], and our new addition, for
various arithmetic sizes k. The last two columns denote the precomputation time and the table size (in bytes)
required for Debraize’s algorithm.

8 Application to HMAC-SHA-1

In this section, we apply our countermeasure to obtain a first-order secure implementation of
HMAC-SHA-1 [NIS95]. Since SHA-1 involves both modular addition and XOR operations, we
must either convert between Boolean and arithmetic masking, or perform the arithmetic additions
directly on the Boolean shares as suggested in [KRJ14].

8.1 HMAC-SHA-1

SHA-1 processes the input in blocks of 512-bits and produces a message digest of 160 bits. If the
length of the message is not a multiple of 512, the message is appended with zeros, followed by
a “1”. The last 64 bits of the message contains the length of the original message in bits. All
operations are performed on 32-bit words, producing an output of five words. We denote by x� i
the left rotation of the 32-bit word x by i bits. Each 512-bit message block M [0], · · · ,M [15] is
expanded to 80 words as follows:

W [i] =

{
M [i] if i ≤ 15
(W [i− 3]⊕W [i− 8]⊕W [i− 14]⊕W [i− 16])� 1 Otherwise

One initially lets A = H0, B = H1, C = H2, D = H3 and E = H4, where the Hi’s are initial
constants. The main loop is defined as follows, for i = 0 to i = 79.

Temp = (A� 5) + f(i, B,C,D) + E +W [i] + k[i]

E = D; D = C; C = B � 30; B = A; A = Temp

where the function f is defined as:

f(i, B,C,D) =


(B ∧ C) ∨ ((¬B) ∧D) if 0 ≤ i ≤ 19
(B ⊕ C ⊕D) if 20 ≤ i ≤ 39
(B ∧ C) ∨ (B ∧D) ∨ (C ∧D) if 40 ≤ i ≤ 59
(B ⊕ C ⊕D) if 60 ≤ i ≤ 79

and k[i] are constants. After the main loop one lets:

H0 ← H0 +A, H1 ← H1 +B, H2 ← H2 + C, H3 ← H3 + C, H4 ← H4 +D (12)



and one processes the next block. All additions are performed modulo 232. Eventually the final
hash result is the 160-bit string H0‖H1‖H2‖H3‖H4.

HMAC-SHA-1 of a message M is computed as:

H
(
K ⊕ opad ‖ H(K ⊕ ipad,M)

)
where H is the SHA-1 function, K is the secret key, and ipad and opad are constants.

8.2 First-Order Secure HMAC-SHA-1

In this section we show how to protect HMAC-SHA-1 against first-order attacks, using either
Goubin’s Boolean to arithmetic conversion (Section 2.1) and our new arithmetic to Boolean con-
version (Algorithm 5), or the addition with Boolean masks (Algorithm 6).

Since W [i] is a linear function, it is easily protected against first-order attacks. Similarly the
function f contains only Boolean operations, so it is easy to protect against side-channel attacks.
More precisely, to compute ¬x given the shares of x = x1 ⊕ x2, it suffices to compute ¬x1 since
¬x = (¬x1)⊕x2. The AND operation is computed using SecAnd (Algorithm 2). The OR operation
is computed using x ∨ y = ¬((¬x) ∧ (¬y)).

The main loop consists of the following operation:

Temp = (A� 5) + f(i, B,C,D) + E +W [i] + k[i]

If we use the masked addition (Algorithm 6), then we must perform four such additions on the
Boolean shares to evaluate the above expression. Since the SHA-1 loop consists of 80 iterations,
we need 4 · 80 = 320 calls to the masked addition (Algorithm 6) for the main loop. Additionally,
the update of the Hi’s (12) needs five calls. Hence, we need a total of 325 calls per each message
block .

Alternatively, one can first convert the Boolean shares to arithmetic shares using Goubin’s
algorithm (Section 2.1), then perform the addition directly on the arithmetic shares, and finally
convert back the resulting arithmetic shares to Boolean shares using Algorithm 5. With this ap-
proach we need 5 Boolean to arithmetic conversions and 1 arithmetic to Boolean conversion for
each iteration. Hence with the additional update of the Hi’s we need a total of 5 · 80 + 5 = 405
Boolean to arithmetic conversions and 80 + 5 = 85 arithmetic to Boolean conversions.

8.3 Practical Implementation

We have implemented HMAC-SHA-1 [NIS95] using the technique above to protect against first-
order attacks, on the same microcontroller as in Section 7.2. To convert from arithmetic to Boolean
masking, we used one of the following: Goubin’s algorithm, Debraize’s algorithm or our new al-
gorithm. The results for computing HMAC-SHA-1 of a single message block are summarized in
Table 3. For Debraize’s algorithm, the timings also include the precomputation time required for
creating the tables. Our algorithms give better performances than Goubin and Debraize (` = 4),
but Debraize with ` = 8 is still slightly better; however as opposed to Debraize, our algorithms
do not require extra memory. For the masked addition (instead of conversions), the new algorithm
performs 10% better than Goubin’s algorithm.

9 Application to SPECK

SPECK is a family of lightweight block ciphers proposed by NSA, which provides high throughput
for application in software [BSS+13]. The SPECK family includes various ciphers based on ARX
(Addition, Rotation, XOR) design with different block and key sizes. To verify the performance
results of our algorithms for k = 64, we used SPECK 128/128, where block and key sizes both
equal to 128 and additions are performed modulo 264. The 128-bit key is expanded to 32 64-bit



Time Penalty Factor Mem.

HMAC-SHA-1 unmasked 128 1 -

HMAC-SHA-1 with Goubin’s conversion 423 3.3 -

HMAC-SHA-1 with Debraize’s conversion (` = 4) 418 3.26 32

HMAC-SHA-1 with Debraize’s conversion (` = 8) 402 3.1 1024

HMAC-SHA-1 with new conversion 410 3.2 -

HMAC-SHA-1 with Goubin’s addition [KRJ14] 1022 8 -

HMAC-SHA-1 with new addition 933 7.2 -

Table 3. Running time in thousands of clock-cycles and penalty factor for HMAC-SHA-1 on a 32-bit processor. The
last column denotes the table size (in bytes) required for Debraize’s algorithm.

round keys (equal to the number of rounds) using Key Expansion procedure. Each round operates
on 128-bit data and consists of following operations: Addition modulo 264, Rotate 8 bits right,
Rotate 3 bits left and XOR. More precisely, given x[2i], x[2i + 1] as input (with each of them
64-bit long), the round i does the following:

x[2i+ 2] = (RotateRight(x[2i], 8) + x[2i+ 1])⊕ key[i]

x[2i+ 3] = (RotateLeft(x[2i+ 1], 3))⊕ x[2i+ 2]

Similar to HMAC-SHA-1, we applied all the algorithms to protect SPECK 128/128 against
first-order attacks. If we use conversion algorithms, we need to perform two Boolean to arithmetic
conversions and one arithmetic to Boolean conversion per round; hence 64 Boolean to arithmetic
conversions and 32 arithmetic to Boolean conversions overall. On the other hand, when we per-
form addition directly on the Boolean shares, we need 32 additions in total. We summarize the
performance of all the algorithms in Table 4.

Time Penalty Factor Memory

SPECK unmasked 2047 1 -

SPECK with Goubin’s conversion 63550 31 -

SPECK with Debraize’s conversion (` = 4) 61603 30 32

SPECK with Debraize’s conversion (` = 8) 37718 18 1024

SPECK with new conversion 51134 24 -

SPECK with Goubin’s addition [KRJ14] 62942 30 -

SPECK with new addition 48574 23 -

Table 4. Running time in clock-cycles and penalty factor for SPECK on a 32-bit processor. The last column denotes
the table size (in bytes) required for Debraize’s algorithm.

As we can see our algorithms outperform Goubin and Debraize’s algorithm (` = 4), but not
Debraize’s algorithm for ` = 8, as for HMAC-SHA-1.

10 Conclusion

We have described a new conversion algorithm from arithmetic to Boolean masking with complexity
O(log k) instead of O(k) for Goubin’s algorithm. We have also described a variant for performing
the arithmetic addition modulo 2k directly with Boolean shares, still with complexity O(log k)
instead of O(k). Our algorithms are proved secure against first-order attacks. In practice, for
arithmetic additions modulo 232 as in case of HMAC-SHA-1, we obtain similar performances as
Goubin’s algorithms and Debraize’s algorithm.



References

[BN05] Yoojin Beak and Mi-Jung Noh. Differetial power attack and masking method. Trends in Mathematics,
8:1–15, 2005.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers.
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404,
2013.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conversion between
boolean and arithmetic masking of any order. In Cryptographic Hardware and Embedded Systems - CHES,
pages 188–205, 2014.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching from arithmetic to boolean
masking. In CHES, pages 89–97, 2003.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching from arithmetic to boolean mask-
ing. In CHES, pages 107–121, 2012.

[Gou01] Louis Goubin. A sound method for switching between boolean and arithmetic masking. In CHES, pages
3–15, 2001.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks.
In CRYPTO, pages 463–481, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO, pages 388–397,
1999.

[KRJ14] Mohamed Karroumi, Benjamin Richard, and Marc Joye. Addition with blinded operands. In COSADE,
2014.

[KS73] Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient solution of a general class of
recurrence equations. Computers, IEEE Transactions on, 100(8):786–793, 1973.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks - revealing the secrets of
smart cards. Springer, 2007.

[NIS95] NIST. Secure hash standard. In Federal Information Processing Standard, FIPA-180-1, 1995.

[NP04] Olaf Neiße and Jürgen Pulkus. Switching blindings with a view towards idea. In CHES, pages 230–239,
2004.

[NW97] Roger M. Needham and David J. Wheeler. Tea extentions. In Technical report, Computer Laboratory,
University of Cambridge, 1997.

[PMO07] Thomas Popp, Stefan Mangard, and Elisabeth Oswald. Power analysis attacks and countermeasures. IEEE
Design and Test of Computers, 24(6):535–543, 2007.

A Goubin’s Arithmetic-to-Boolean Conversion

From Theorem 2, one obtains the following corollary.

Corollary 1 ([Gou01]) For any random γ ∈ F2k , if we assume x′ = (A + r) ⊕ r, we also have
x′ = A⊕ 2γ ⊕ tk−1, where tk−1 can be obtained from the following recursion formula:

{
t0 = 2γ
∀i ≥ 0, ti+1 = 2[ti ∧ (A⊕ r)⊕ ω]

(13)

where ω = γ ⊕ (2γ) ∧ (A⊕ r)⊕A ∧ r.

Since the iterative computation of ti contains only XOR and AND operations, it can easily be
protected against first-order attacks. This gives the algorithm below.



Algorithm 7 Goubin A→B Conversion
Input: A, r such that x = A+ r
Output: x′, r such that x′ = x⊕ r
1: γ ← rand(k)
2: T ← 2γ
3: x′ ← γ ⊕ r
4: Ω ← γ ∧ x′
5: x′ ← T ⊕A
6: γ ← γ ⊕ x′
7: γ ← γ ∧ r
8: Ω ← Ω ⊕ γ
9: γ ← T ∧A

10: Ω ← Ω ⊕ γ
11: for j := 1 to k − 1 do
12: γ ← T ∧ r
13: γ ← γ ⊕Ω
14: T ← T ∧A
15: γ ← γ ⊕ T
16: T ← 2γ
17: end for
18: x′ ← x′ ⊕ T

We can see that the total number of operations in the above algorithm is 5k + 5, in addition
to one random number generation. Karroumi et al. recently improved Goubin’s conversion scheme
down to 5k+1 operations [KRJ14]. More precisely they start the loop in (13) from i = 2 instead of
i = 1, and compute t1 directly with a single operation, which decreases the number of operations
by 4.

Karroumi et al. also provided an algorithm to compute first-order secure addition on Boolean
shares using Goubin’s recursion formula, requiring 5k+8 operations and a single random generation.
More precisely, given two sensitive variables x and y masked as x = x′ ⊕ s and y = y′ ⊕ r, their
algorithm computes two shares z1 = (x+ y)⊕ r ⊕ s, z2 = r ⊕ s using Goubin’s recursion formula
(1); we refer to [KRJ14] for more details.

B Proof of Lemma 1

We consider again recursion (7): {
z0 = b0
∀i ≥ 1, zi = aizi−1 + bi

The recursion for ci is similar when we denote the AND operation by a multiplication, and the
XOR operation by an addition: {

c0 = 0
∀i ≥ 1, ci = ai−1ci−1 + bi−1

Therefore we obtain ci+1 = zi for all i ≥ 0. From the Q(m,n) function given in (8) we define the
sequences:

Gi,j := Q
(
j,max(j − 2i + 1, 0)

)
Pi,j :=

j∏
v=max(j−2i+1,0)

av



We show that these sequences satisfy the same recurrence (10) from Section 3.2. From (8) we have
the recurrence for j ≥ 2i−1:

Gi,j =

j∑
u=max(j−2i+1,0)

(
j∏

v=u+1

av

)
bu

=

j−2i−1∑
u=max(j−2i+1,0)

(
j∏

v=u+1

av

)
bu +

j∑
u=j−2i−1+1

(
j∏

v=u+1

av

)
bu

=

 j∏
v=j−2i−1+1

av

 j−2i−1∑
u=max(j−2i+1,0)

j−2i−1∏
v=u+1

av

 bu +Q(j, j − 2i−1 + 1)

= Pi−1,j ·Q
(
j − 2i−1,max(j − 2i + 1, 0)

)
+Gi−1,j

= Pi−1,j ·Gi−1,j−2i−1 +Gi−1,j

We obtain a similar recurrence for Pi,j when j ≥ 2i−1:

Pi,j =

j∏
v=max(j−2i+1,0)

av

=

 j−2i−1∏
v=max(j−2i+1,0)

av

 ·
 j∏

v=j−2i−1+1

av

 = Pi−1,j−2i−1 · Pi−1,j

In summary we obtain for j ≥ 2i−1 the relations:{
Gi,j = Pi−1,j ·Gi−1,j−2i−1 +Gi−1,j

Pi,j = Pi−1,j · Pi−1,j−2i−1

which are exactly the same as (10) from Section 3.2. Moreover for 0 ≤ j < 2i−1, as in Section
3.2, we have Gi,j = Q(j, 0) = Gi−1,j and Pi,j = Pi−1,j . Finally we have the same initial conditions
G0,j = Q(j, j) = bj = x(j) ∧ y(j) and P0,j = aj = x(j) ⊕ y(j). This proves that the sequence Gi,j

defined by (10) in Section 3.2 is such that:

Gi,j = Q
(
j,max(j − 2i + 1, 0)

)
This implies that we have G0,0 = Q(0, 0) = z0 and Gi,j = Q(j, 0) = zj for all 2i−1 ≤ j < 2i.
Moreover as noted initially we have cj+1 = zj for all j ≥ 0. Therefore the recurrence from Section
3.2 indeed computes the carry signal cj , with c0 = 0, c1 = G0,0 and cj+1 = Gi,j for 2i−1 ≤ j < 2i.
This terminates the proof of Lemma 1. ut


