/* * The Clear BSD License * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_adc16.h" /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get instance number for ADC16 module. * * @param base ADC16 peripheral base address */ static uint32_t ADC16_GetInstance(ADC_Type *base); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to ADC16 bases for each instance. */ static ADC_Type *const s_adc16Bases[] = ADC_BASE_PTRS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to ADC16 clocks for each instance. */ static const clock_ip_name_t s_adc16Clocks[] = ADC16_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /******************************************************************************* * Code ******************************************************************************/ static uint32_t ADC16_GetInstance(ADC_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_adc16Bases); instance++) { if (s_adc16Bases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_adc16Bases)); return instance; } void ADC16_Init(ADC_Type *base, const adc16_config_t *config) { assert(NULL != config); uint32_t tmp32; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable the clock. */ CLOCK_EnableClock(s_adc16Clocks[ADC16_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* ADCx_CFG1. */ tmp32 = ADC_CFG1_ADICLK(config->clockSource) | ADC_CFG1_MODE(config->resolution); if (kADC16_LongSampleDisabled != config->longSampleMode) { tmp32 |= ADC_CFG1_ADLSMP_MASK; } tmp32 |= ADC_CFG1_ADIV(config->clockDivider); if (config->enableLowPower) { tmp32 |= ADC_CFG1_ADLPC_MASK; } base->CFG1 = tmp32; /* ADCx_CFG2. */ tmp32 = base->CFG2 & ~(ADC_CFG2_ADACKEN_MASK | ADC_CFG2_ADHSC_MASK | ADC_CFG2_ADLSTS_MASK); if (kADC16_LongSampleDisabled != config->longSampleMode) { tmp32 |= ADC_CFG2_ADLSTS(config->longSampleMode); } if (config->enableHighSpeed) { tmp32 |= ADC_CFG2_ADHSC_MASK; } if (config->enableAsynchronousClock) { tmp32 |= ADC_CFG2_ADACKEN_MASK; } base->CFG2 = tmp32; /* ADCx_SC2. */ tmp32 = base->SC2 & ~(ADC_SC2_REFSEL_MASK); tmp32 |= ADC_SC2_REFSEL(config->referenceVoltageSource); base->SC2 = tmp32; /* ADCx_SC3. */ if (config->enableContinuousConversion) { base->SC3 |= ADC_SC3_ADCO_MASK; } else { base->SC3 &= ~ADC_SC3_ADCO_MASK; } } void ADC16_Deinit(ADC_Type *base) { #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Disable the clock. */ CLOCK_DisableClock(s_adc16Clocks[ADC16_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } void ADC16_GetDefaultConfig(adc16_config_t *config) { assert(NULL != config); config->referenceVoltageSource = kADC16_ReferenceVoltageSourceVref; config->clockSource = kADC16_ClockSourceAsynchronousClock; config->enableAsynchronousClock = true; config->clockDivider = kADC16_ClockDivider8; config->resolution = kADC16_ResolutionSE12Bit; config->longSampleMode = kADC16_LongSampleDisabled; config->enableHighSpeed = false; config->enableLowPower = false; config->enableContinuousConversion = false; } #if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && FSL_FEATURE_ADC16_HAS_CALIBRATION status_t ADC16_DoAutoCalibration(ADC_Type *base) { bool bHWTrigger = false; volatile uint32_t tmp32; /* 'volatile' here is for the dummy read of ADCx_R[0] register. */ status_t status = kStatus_Success; /* The calibration would be failed when in hardwar mode. * Remember the hardware trigger state here and restore it later if the hardware trigger is enabled.*/ if (0U != (ADC_SC2_ADTRG_MASK & base->SC2)) { bHWTrigger = true; base->SC2 &= ~ADC_SC2_ADTRG_MASK; } /* Clear the CALF and launch the calibration. */ base->SC3 |= ADC_SC3_CAL_MASK | ADC_SC3_CALF_MASK; while (0U == (kADC16_ChannelConversionDoneFlag & ADC16_GetChannelStatusFlags(base, 0U))) { /* Check the CALF when the calibration is active. */ if (0U != (kADC16_CalibrationFailedFlag & ADC16_GetStatusFlags(base))) { status = kStatus_Fail; break; } } tmp32 = base->R[0]; /* Dummy read to clear COCO caused by calibration. */ /* Restore the hardware trigger setting if it was enabled before. */ if (bHWTrigger) { base->SC2 |= ADC_SC2_ADTRG_MASK; } /* Check the CALF at the end of calibration. */ if (0U != (kADC16_CalibrationFailedFlag & ADC16_GetStatusFlags(base))) { status = kStatus_Fail; } if (kStatus_Success != status) /* Check if the calibration process is succeed. */ { return status; } /* Calculate the calibration values. */ tmp32 = base->CLP0 + base->CLP1 + base->CLP2 + base->CLP3 + base->CLP4 + base->CLPS; tmp32 = 0x8000U | (tmp32 >> 1U); base->PG = tmp32; #if defined(FSL_FEATURE_ADC16_HAS_DIFF_MODE) && FSL_FEATURE_ADC16_HAS_DIFF_MODE tmp32 = base->CLM0 + base->CLM1 + base->CLM2 + base->CLM3 + base->CLM4 + base->CLMS; tmp32 = 0x8000U | (tmp32 >> 1U); base->MG = tmp32; #endif /* FSL_FEATURE_ADC16_HAS_DIFF_MODE */ return kStatus_Success; } #endif /* FSL_FEATURE_ADC16_HAS_CALIBRATION */ #if defined(FSL_FEATURE_ADC16_HAS_MUX_SELECT) && FSL_FEATURE_ADC16_HAS_MUX_SELECT void ADC16_SetChannelMuxMode(ADC_Type *base, adc16_channel_mux_mode_t mode) { if (kADC16_ChannelMuxA == mode) { base->CFG2 &= ~ADC_CFG2_MUXSEL_MASK; } else /* kADC16_ChannelMuxB. */ { base->CFG2 |= ADC_CFG2_MUXSEL_MASK; } } #endif /* FSL_FEATURE_ADC16_HAS_MUX_SELECT */ void ADC16_SetHardwareCompareConfig(ADC_Type *base, const adc16_hardware_compare_config_t *config) { uint32_t tmp32 = base->SC2 & ~(ADC_SC2_ACFE_MASK | ADC_SC2_ACFGT_MASK | ADC_SC2_ACREN_MASK); if (!config) /* Pass "NULL" to disable the feature. */ { base->SC2 = tmp32; return; } /* Enable the feature. */ tmp32 |= ADC_SC2_ACFE_MASK; /* Select the hardware compare working mode. */ switch (config->hardwareCompareMode) { case kADC16_HardwareCompareMode0: break; case kADC16_HardwareCompareMode1: tmp32 |= ADC_SC2_ACFGT_MASK; break; case kADC16_HardwareCompareMode2: tmp32 |= ADC_SC2_ACREN_MASK; break; case kADC16_HardwareCompareMode3: tmp32 |= ADC_SC2_ACFGT_MASK | ADC_SC2_ACREN_MASK; break; default: break; } base->SC2 = tmp32; /* Load the compare values. */ base->CV1 = ADC_CV1_CV(config->value1); base->CV2 = ADC_CV2_CV(config->value2); } #if defined(FSL_FEATURE_ADC16_HAS_HW_AVERAGE) && FSL_FEATURE_ADC16_HAS_HW_AVERAGE void ADC16_SetHardwareAverage(ADC_Type *base, adc16_hardware_average_mode_t mode) { uint32_t tmp32 = base->SC3 & ~(ADC_SC3_AVGE_MASK | ADC_SC3_AVGS_MASK); if (kADC16_HardwareAverageDisabled != mode) { tmp32 |= ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(mode); } base->SC3 = tmp32; } #endif /* FSL_FEATURE_ADC16_HAS_HW_AVERAGE */ #if defined(FSL_FEATURE_ADC16_HAS_PGA) && FSL_FEATURE_ADC16_HAS_PGA void ADC16_SetPGAConfig(ADC_Type *base, const adc16_pga_config_t *config) { uint32_t tmp32; if (!config) /* Passing "NULL" is to disable the feature. */ { base->PGA = 0U; return; } /* Enable the PGA and set the gain value. */ tmp32 = ADC_PGA_PGAEN_MASK | ADC_PGA_PGAG(config->pgaGain); /* Configure the misc features for PGA. */ if (config->enableRunInNormalMode) { tmp32 |= ADC_PGA_PGALPb_MASK; } #if defined(FSL_FEATURE_ADC16_HAS_PGA_CHOPPING) && FSL_FEATURE_ADC16_HAS_PGA_CHOPPING if (config->disablePgaChopping) { tmp32 |= ADC_PGA_PGACHPb_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_PGA_CHOPPING */ #if defined(FSL_FEATURE_ADC16_HAS_PGA_OFFSET_MEASUREMENT) && FSL_FEATURE_ADC16_HAS_PGA_OFFSET_MEASUREMENT if (config->enableRunInOffsetMeasurement) { tmp32 |= ADC_PGA_PGAOFSM_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_PGA_OFFSET_MEASUREMENT */ base->PGA = tmp32; } #endif /* FSL_FEATURE_ADC16_HAS_PGA */ uint32_t ADC16_GetStatusFlags(ADC_Type *base) { uint32_t ret = 0; if (0U != (base->SC2 & ADC_SC2_ADACT_MASK)) { ret |= kADC16_ActiveFlag; } #if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && FSL_FEATURE_ADC16_HAS_CALIBRATION if (0U != (base->SC3 & ADC_SC3_CALF_MASK)) { ret |= kADC16_CalibrationFailedFlag; } #endif /* FSL_FEATURE_ADC16_HAS_CALIBRATION */ return ret; } void ADC16_ClearStatusFlags(ADC_Type *base, uint32_t mask) { #if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && FSL_FEATURE_ADC16_HAS_CALIBRATION if (0U != (mask & kADC16_CalibrationFailedFlag)) { base->SC3 |= ADC_SC3_CALF_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_CALIBRATION */ } void ADC16_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc16_channel_config_t *config) { assert(channelGroup < ADC_SC1_COUNT); assert(NULL != config); uint32_t sc1 = ADC_SC1_ADCH(config->channelNumber); /* Set the channel number. */ #if defined(FSL_FEATURE_ADC16_HAS_DIFF_MODE) && FSL_FEATURE_ADC16_HAS_DIFF_MODE /* Enable the differential conversion. */ if (config->enableDifferentialConversion) { sc1 |= ADC_SC1_DIFF_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_DIFF_MODE */ /* Enable the interrupt when the conversion is done. */ if (config->enableInterruptOnConversionCompleted) { sc1 |= ADC_SC1_AIEN_MASK; } base->SC1[channelGroup] = sc1; } uint32_t ADC16_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup) { assert(channelGroup < ADC_SC1_COUNT); uint32_t ret = 0U; if (0U != (base->SC1[channelGroup] & ADC_SC1_COCO_MASK)) { ret |= kADC16_ChannelConversionDoneFlag; } return ret; }