/* * The Clear BSD License * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2016 - 2017 , NXP * All rights reserved. * * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_clock.h" /******************************************************************************* * Definitions ******************************************************************************/ /* Macro definition remap workaround. */ #if (defined(MCG_C2_EREFS_MASK) && !(defined(MCG_C2_EREFS0_MASK))) #define MCG_C2_EREFS0_MASK MCG_C2_EREFS_MASK #endif #if (defined(MCG_C2_HGO_MASK) && !(defined(MCG_C2_HGO0_MASK))) #define MCG_C2_HGO0_MASK MCG_C2_HGO_MASK #endif #if (defined(MCG_C2_RANGE_MASK) && !(defined(MCG_C2_RANGE0_MASK))) #define MCG_C2_RANGE0_MASK MCG_C2_RANGE_MASK #endif #if (defined(MCG_C6_CME_MASK) && !(defined(MCG_C6_CME0_MASK))) #define MCG_C6_CME0_MASK MCG_C6_CME_MASK #endif /* PLL fixed multiplier when there is not PRDIV and VDIV. */ #define PLL_FIXED_MULT (375U) /* Max frequency of the reference clock used for internal clock trim. */ #define TRIM_REF_CLK_MIN (8000000U) /* Min frequency of the reference clock used for internal clock trim. */ #define TRIM_REF_CLK_MAX (16000000U) /* Max trim value of fast internal reference clock. */ #define TRIM_FIRC_MAX (5000000U) /* Min trim value of fast internal reference clock. */ #define TRIM_FIRC_MIN (3000000U) /* Max trim value of fast internal reference clock. */ #define TRIM_SIRC_MAX (39063U) /* Min trim value of fast internal reference clock. */ #define TRIM_SIRC_MIN (31250U) #define MCG_S_IRCST_VAL ((MCG->S & MCG_S_IRCST_MASK) >> MCG_S_IRCST_SHIFT) #define MCG_S_CLKST_VAL ((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) #define MCG_S_IREFST_VAL ((MCG->S & MCG_S_IREFST_MASK) >> MCG_S_IREFST_SHIFT) #define MCG_S_PLLST_VAL ((MCG->S & MCG_S_PLLST_MASK) >> MCG_S_PLLST_SHIFT) #define MCG_C1_FRDIV_VAL ((MCG->C1 & MCG_C1_FRDIV_MASK) >> MCG_C1_FRDIV_SHIFT) #define MCG_C2_LP_VAL ((MCG->C2 & MCG_C2_LP_MASK) >> MCG_C2_LP_SHIFT) #define MCG_C2_RANGE_VAL ((MCG->C2 & MCG_C2_RANGE_MASK) >> MCG_C2_RANGE_SHIFT) #define MCG_SC_FCRDIV_VAL ((MCG->SC & MCG_SC_FCRDIV_MASK) >> MCG_SC_FCRDIV_SHIFT) #define MCG_S2_PLLCST_VAL ((MCG->S2 & MCG_S2_PLLCST_MASK) >> MCG_S2_PLLCST_SHIFT) #define MCG_C7_OSCSEL_VAL ((MCG->C7 & MCG_C7_OSCSEL_MASK) >> MCG_C7_OSCSEL_SHIFT) #define MCG_C4_DMX32_VAL ((MCG->C4 & MCG_C4_DMX32_MASK) >> MCG_C4_DMX32_SHIFT) #define MCG_C4_DRST_DRS_VAL ((MCG->C4 & MCG_C4_DRST_DRS_MASK) >> MCG_C4_DRST_DRS_SHIFT) #define MCG_C7_PLL32KREFSEL_VAL ((MCG->C7 & MCG_C7_PLL32KREFSEL_MASK) >> MCG_C7_PLL32KREFSEL_SHIFT) #define MCG_C5_PLLREFSEL0_VAL ((MCG->C5 & MCG_C5_PLLREFSEL0_MASK) >> MCG_C5_PLLREFSEL0_SHIFT) #define MCG_C11_PLLREFSEL1_VAL ((MCG->C11 & MCG_C11_PLLREFSEL1_MASK) >> MCG_C11_PLLREFSEL1_SHIFT) #define MCG_C11_PRDIV1_VAL ((MCG->C11 & MCG_C11_PRDIV1_MASK) >> MCG_C11_PRDIV1_SHIFT) #define MCG_C12_VDIV1_VAL ((MCG->C12 & MCG_C12_VDIV1_MASK) >> MCG_C12_VDIV1_SHIFT) #define MCG_C5_PRDIV0_VAL ((MCG->C5 & MCG_C5_PRDIV0_MASK) >> MCG_C5_PRDIV0_SHIFT) #define MCG_C6_VDIV0_VAL ((MCG->C6 & MCG_C6_VDIV0_MASK) >> MCG_C6_VDIV0_SHIFT) #define OSC_MODE_MASK (MCG_C2_EREFS0_MASK | MCG_C2_HGO0_MASK | MCG_C2_RANGE0_MASK) #define SIM_CLKDIV1_OUTDIV1_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> SIM_CLKDIV1_OUTDIV1_SHIFT) #define SIM_CLKDIV1_OUTDIV2_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV2_MASK) >> SIM_CLKDIV1_OUTDIV2_SHIFT) #define SIM_CLKDIV1_OUTDIV3_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV3_MASK) >> SIM_CLKDIV1_OUTDIV3_SHIFT) #define SIM_CLKDIV1_OUTDIV4_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV4_MASK) >> SIM_CLKDIV1_OUTDIV4_SHIFT) #define SIM_SOPT1_OSC32KSEL_VAL ((SIM->SOPT1 & SIM_SOPT1_OSC32KSEL_MASK) >> SIM_SOPT1_OSC32KSEL_SHIFT) #define SIM_SOPT2_PLLFLLSEL_VAL ((SIM->SOPT2 & SIM_SOPT2_PLLFLLSEL_MASK) >> SIM_SOPT2_PLLFLLSEL_SHIFT) /* MCG_S_CLKST definition. */ enum _mcg_clkout_stat { kMCG_ClkOutStatFll, /* FLL. */ kMCG_ClkOutStatInt, /* Internal clock. */ kMCG_ClkOutStatExt, /* External clock. */ kMCG_ClkOutStatPll /* PLL. */ }; /* MCG_S_PLLST definition. */ enum _mcg_pllst { kMCG_PllstFll, /* FLL is used. */ kMCG_PllstPll /* PLL is used. */ }; /******************************************************************************* * Variables ******************************************************************************/ /* Slow internal reference clock frequency. */ static uint32_t s_slowIrcFreq = 32768U; /* Fast internal reference clock frequency. */ static uint32_t s_fastIrcFreq = 4000000U; /* External XTAL0 (OSC0) clock frequency. */ uint32_t g_xtal0Freq; /* External XTAL32K clock frequency. */ uint32_t g_xtal32Freq; /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get the MCG external reference clock frequency. * * Get the current MCG external reference clock frequency in Hz. It is * the frequency select by MCG_C7[OSCSEL]. This is an internal function. * * @return MCG external reference clock frequency in Hz. */ static uint32_t CLOCK_GetMcgExtClkFreq(void); /*! * @brief Get the MCG FLL external reference clock frequency. * * Get the current MCG FLL external reference clock frequency in Hz. It is * the frequency after by MCG_C1[FRDIV]. This is an internal function. * * @return MCG FLL external reference clock frequency in Hz. */ static uint32_t CLOCK_GetFllExtRefClkFreq(void); /*! * @brief Get the MCG FLL reference clock frequency. * * Get the current MCG FLL reference clock frequency in Hz. It is * the frequency select by MCG_C1[IREFS]. This is an internal function. * * @return MCG FLL reference clock frequency in Hz. */ static uint32_t CLOCK_GetFllRefClkFreq(void); /*! * @brief Get the frequency of clock selected by MCG_C2[IRCS]. * * This clock's two output: * 1. MCGOUTCLK when MCG_S[CLKST]=0. * 2. MCGIRCLK when MCG_C1[IRCLKEN]=1. * * @return The frequency in Hz. */ static uint32_t CLOCK_GetInternalRefClkSelectFreq(void); /*! * @brief Get the MCG PLL/PLL0 reference clock frequency. * * Get the current MCG PLL/PLL0 reference clock frequency in Hz. * This is an internal function. * * @return MCG PLL/PLL0 reference clock frequency in Hz. */ static uint32_t CLOCK_GetPll0RefFreq(void); /*! * @brief Calculate the RANGE value base on crystal frequency. * * To setup external crystal oscillator, must set the register bits RANGE * base on the crystal frequency. This function returns the RANGE base on the * input frequency. This is an internal function. * * @param freq Crystal frequency in Hz. * @return The RANGE value. */ static uint8_t CLOCK_GetOscRangeFromFreq(uint32_t freq); /******************************************************************************* * Code ******************************************************************************/ #ifndef MCG_USER_CONFIG_FLL_STABLE_DELAY_EN /*! * @brief Delay function to wait FLL stable. * * Delay function to wait FLL stable in FEI mode or FEE mode, should wait at least * 1ms. Every time changes FLL setting, should wait this time for FLL stable. */ void CLOCK_FllStableDelay(void) { /* Should wait at least 1ms. Because in these modes, the core clock is 100MHz at most, so this function could obtain the 1ms delay. */ volatile uint32_t i = 30000U; while (i--) { __NOP(); } } #else /* With MCG_USER_CONFIG_FLL_STABLE_DELAY_EN defined. */ /* Once user defines the MCG_USER_CONFIG_FLL_STABLE_DELAY_EN to use their own delay function, he has to * create his own CLOCK_FllStableDelay() function in application code. Since the clock functions in this * file would call the CLOCK_FllStableDelay() regardness how it is defined. */ extern void CLOCK_FllStableDelay(void); #endif /* MCG_USER_CONFIG_FLL_STABLE_DELAY_EN */ static uint32_t CLOCK_GetMcgExtClkFreq(void) { uint32_t freq; switch (MCG_C7_OSCSEL_VAL) { case 0U: /* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */ assert(g_xtal0Freq); freq = g_xtal0Freq; break; case 1U: /* Please call CLOCK_SetXtal32Freq base on board setting before using XTAL32K/RTC_CLKIN clock. */ assert(g_xtal32Freq); freq = g_xtal32Freq; break; case 2U: freq = MCG_INTERNAL_IRC_48M; break; default: freq = 0U; break; } return freq; } static uint32_t CLOCK_GetFllExtRefClkFreq(void) { /* FllExtRef = McgExtRef / FllExtRefDiv */ uint8_t frdiv; uint8_t range; uint8_t oscsel; uint32_t freq = CLOCK_GetMcgExtClkFreq(); if (!freq) { return freq; } frdiv = MCG_C1_FRDIV_VAL; freq >>= frdiv; range = MCG_C2_RANGE_VAL; oscsel = MCG_C7_OSCSEL_VAL; /* When should use divider 32, 64, 128, 256, 512, 1024, 1280, 1536. 1. MCG_C7[OSCSEL] selects IRC48M. 2. MCG_C7[OSCSEL] selects OSC0 and MCG_C2[RANGE] is not 0. */ if (((0U != range) && (kMCG_OscselOsc == oscsel)) || (kMCG_OscselIrc == oscsel)) { switch (frdiv) { case 0: case 1: case 2: case 3: case 4: case 5: freq >>= 5u; break; case 6: /* 64*20=1280 */ freq /= 20u; break; case 7: /* 128*12=1536 */ freq /= 12u; break; default: freq = 0u; break; } } return freq; } static uint32_t CLOCK_GetInternalRefClkSelectFreq(void) { if (kMCG_IrcSlow == MCG_S_IRCST_VAL) { /* Slow internal reference clock selected*/ return s_slowIrcFreq; } else { /* Fast internal reference clock selected*/ return s_fastIrcFreq >> MCG_SC_FCRDIV_VAL; } } static uint32_t CLOCK_GetFllRefClkFreq(void) { /* If use external reference clock. */ if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL) { return CLOCK_GetFllExtRefClkFreq(); } /* If use internal reference clock. */ else { return s_slowIrcFreq; } } static uint32_t CLOCK_GetPll0RefFreq(void) { /* MCG external reference clock. */ return CLOCK_GetMcgExtClkFreq(); } static uint8_t CLOCK_GetOscRangeFromFreq(uint32_t freq) { uint8_t range; if (freq <= 39063U) { range = 0U; } else if (freq <= 8000000U) { range = 1U; } else { range = 2U; } return range; } uint32_t CLOCK_GetOsc0ErClkFreq(void) { if (OSC0->CR & OSC_CR_ERCLKEN_MASK) { /* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */ assert(g_xtal0Freq); return g_xtal0Freq; } else { return 0U; } } /* Function Name : CLOCK_GetEr32kClkFreq */ uint32_t CLOCK_GetEr32kClkFreq(void) { uint32_t freq; switch (SIM_SOPT1_OSC32KSEL_VAL) { case 0U: /* OSC 32k clock */ freq = (CLOCK_GetOsc0ErClkFreq() == 32768U) ? 32768U : 0U; break; case 2U: /* RTC 32k clock */ /* Please call CLOCK_SetXtal32Freq base on board setting before using XTAL32K/RTC_CLKIN clock. */ assert(g_xtal32Freq); freq = g_xtal32Freq; break; case 3U: /* LPO clock */ freq = LPO_CLK_FREQ; break; default: freq = 0U; break; } return freq; } uint32_t CLOCK_GetPllFllSelClkFreq(void) { uint32_t freq; switch (SIM_SOPT2_PLLFLLSEL_VAL) { case 0U: /* FLL. */ freq = CLOCK_GetFllFreq(); break; case 1U: /* PLL. */ freq = CLOCK_GetPll0Freq(); break; case 3U: /* MCG IRC48M. */ freq = MCG_INTERNAL_IRC_48M; break; default: freq = 0U; break; } return freq; } uint32_t CLOCK_GetFlashClkFreq(void) { return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV4_VAL + 1); } uint32_t CLOCK_GetFlexBusClkFreq(void) { return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV3_VAL + 1); } uint32_t CLOCK_GetBusClkFreq(void) { return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV2_VAL + 1); } uint32_t CLOCK_GetCoreSysClkFreq(void) { return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1); } uint32_t CLOCK_GetFreq(clock_name_t clockName) { uint32_t freq; switch (clockName) { case kCLOCK_CoreSysClk: freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1); break; case kCLOCK_BusClk: freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV2_VAL + 1); break; case kCLOCK_FlexBusClk: freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV3_VAL + 1); break; case kCLOCK_FlashClk: freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV4_VAL + 1); break; case kCLOCK_PllFllSelClk: freq = CLOCK_GetPllFllSelClkFreq(); break; case kCLOCK_Er32kClk: freq = CLOCK_GetEr32kClkFreq(); break; case kCLOCK_McgFixedFreqClk: freq = CLOCK_GetFixedFreqClkFreq(); break; case kCLOCK_McgInternalRefClk: freq = CLOCK_GetInternalRefClkFreq(); break; case kCLOCK_McgFllClk: freq = CLOCK_GetFllFreq(); break; case kCLOCK_McgPll0Clk: freq = CLOCK_GetPll0Freq(); break; case kCLOCK_McgIrc48MClk: freq = MCG_INTERNAL_IRC_48M; break; case kCLOCK_LpoClk: freq = LPO_CLK_FREQ; break; case kCLOCK_Osc0ErClk: freq = CLOCK_GetOsc0ErClkFreq(); break; default: freq = 0U; break; } return freq; } void CLOCK_SetSimConfig(sim_clock_config_t const *config) { SIM->CLKDIV1 = config->clkdiv1; CLOCK_SetPllFllSelClock(config->pllFllSel); CLOCK_SetEr32kClock(config->er32kSrc); } bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq) { bool ret = true; CLOCK_DisableClock(kCLOCK_Usbfs0); if (kCLOCK_UsbSrcExt == src) { SIM->SOPT2 &= ~SIM_SOPT2_USBSRC_MASK; } else { switch (freq) { case 120000000U: SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(4) | SIM_CLKDIV2_USBFRAC(1); break; case 96000000U: SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(1) | SIM_CLKDIV2_USBFRAC(0); break; case 72000000U: SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(2) | SIM_CLKDIV2_USBFRAC(1); break; case 48000000U: SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(0) | SIM_CLKDIV2_USBFRAC(0); break; default: ret = false; break; } SIM->SOPT2 = ((SIM->SOPT2 & ~(SIM_SOPT2_PLLFLLSEL_MASK | SIM_SOPT2_USBSRC_MASK)) | (uint32_t)src); } CLOCK_EnableClock(kCLOCK_Usbfs0); if (kCLOCK_UsbSrcIrc48M == src) { USB0->CLK_RECOVER_IRC_EN = 0x03U; USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK; } return ret; } uint32_t CLOCK_GetOutClkFreq(void) { uint32_t mcgoutclk; uint32_t clkst = MCG_S_CLKST_VAL; switch (clkst) { case kMCG_ClkOutStatPll: mcgoutclk = CLOCK_GetPll0Freq(); break; case kMCG_ClkOutStatFll: mcgoutclk = CLOCK_GetFllFreq(); break; case kMCG_ClkOutStatInt: mcgoutclk = CLOCK_GetInternalRefClkSelectFreq(); break; case kMCG_ClkOutStatExt: mcgoutclk = CLOCK_GetMcgExtClkFreq(); break; default: mcgoutclk = 0U; break; } return mcgoutclk; } uint32_t CLOCK_GetFllFreq(void) { static const uint16_t fllFactorTable[4][2] = {{640, 732}, {1280, 1464}, {1920, 2197}, {2560, 2929}}; uint8_t drs, dmx32; uint32_t freq; /* If FLL is not enabled currently, then return 0U. */ if ((MCG->C2 & MCG_C2_LP_MASK) || (MCG->S & MCG_S_PLLST_MASK)) { return 0U; } /* Get FLL reference clock frequency. */ freq = CLOCK_GetFllRefClkFreq(); if (!freq) { return freq; } drs = MCG_C4_DRST_DRS_VAL; dmx32 = MCG_C4_DMX32_VAL; return freq * fllFactorTable[drs][dmx32]; } uint32_t CLOCK_GetInternalRefClkFreq(void) { /* If MCGIRCLK is gated. */ if (!(MCG->C1 & MCG_C1_IRCLKEN_MASK)) { return 0U; } return CLOCK_GetInternalRefClkSelectFreq(); } uint32_t CLOCK_GetFixedFreqClkFreq(void) { uint32_t freq = CLOCK_GetFllRefClkFreq(); /* MCGFFCLK must be no more than MCGOUTCLK/8. */ if ((freq) && (freq <= (CLOCK_GetOutClkFreq() / 8U))) { return freq; } else { return 0U; } } uint32_t CLOCK_GetPll0Freq(void) { uint32_t mcgpll0clk; /* If PLL0 is not enabled, return 0. */ if (!(MCG->S & MCG_S_LOCK0_MASK)) { return 0U; } mcgpll0clk = CLOCK_GetPll0RefFreq(); /* * Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. * Please call CLOCK_SetXtal1Freq base on board setting before using OSC1 clock. */ assert(mcgpll0clk); mcgpll0clk /= (FSL_FEATURE_MCG_PLL_PRDIV_BASE + MCG_C5_PRDIV0_VAL); mcgpll0clk *= (FSL_FEATURE_MCG_PLL_VDIV_BASE + MCG_C6_VDIV0_VAL); return mcgpll0clk; } status_t CLOCK_SetExternalRefClkConfig(mcg_oscsel_t oscsel) { bool needDelay; uint32_t i; #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) /* If change MCG_C7[OSCSEL] and external reference clock is system clock source, return error. */ if ((MCG_C7_OSCSEL_VAL != oscsel) && (!(MCG->S & MCG_S_IREFST_MASK))) { return kStatus_MCG_SourceUsed; } #endif /* MCG_CONFIG_CHECK_PARAM */ if (MCG_C7_OSCSEL_VAL != oscsel) { /* If change OSCSEL, need to delay, ERR009878. */ needDelay = true; } else { needDelay = false; } MCG->C7 = (MCG->C7 & ~MCG_C7_OSCSEL_MASK) | MCG_C7_OSCSEL(oscsel); if (needDelay) { /* ERR009878 Delay at least 50 micro-seconds for external clock change valid. */ i = 1500U; while (i--) { __NOP(); } } return kStatus_Success; } status_t CLOCK_SetInternalRefClkConfig(uint8_t enableMode, mcg_irc_mode_t ircs, uint8_t fcrdiv) { uint32_t mcgOutClkState = MCG_S_CLKST_VAL; mcg_irc_mode_t curIrcs = (mcg_irc_mode_t)MCG_S_IRCST_VAL; uint8_t curFcrdiv = MCG_SC_FCRDIV_VAL; #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) /* If MCGIRCLK is used as system clock source. */ if (kMCG_ClkOutStatInt == mcgOutClkState) { /* If need to change MCGIRCLK source or driver, return error. */ if (((kMCG_IrcFast == curIrcs) && (fcrdiv != curFcrdiv)) || (ircs != curIrcs)) { return kStatus_MCG_SourceUsed; } } #endif /* If need to update the FCRDIV. */ if (fcrdiv != curFcrdiv) { /* If fast IRC is in use currently, change to slow IRC. */ if ((kMCG_IrcFast == curIrcs) && ((mcgOutClkState == kMCG_ClkOutStatInt) || (MCG->C1 & MCG_C1_IRCLKEN_MASK))) { MCG->C2 = ((MCG->C2 & ~MCG_C2_IRCS_MASK) | (MCG_C2_IRCS(kMCG_IrcSlow))); while (MCG_S_IRCST_VAL != kMCG_IrcSlow) { } } /* Update FCRDIV. */ MCG->SC = (MCG->SC & ~(MCG_SC_FCRDIV_MASK | MCG_SC_ATMF_MASK | MCG_SC_LOCS0_MASK)) | MCG_SC_FCRDIV(fcrdiv); } /* Set internal reference clock selection. */ MCG->C2 = (MCG->C2 & ~MCG_C2_IRCS_MASK) | (MCG_C2_IRCS(ircs)); MCG->C1 = (MCG->C1 & ~(MCG_C1_IRCLKEN_MASK | MCG_C1_IREFSTEN_MASK)) | (uint8_t)enableMode; /* If MCGIRCLK is used, need to wait for MCG_S_IRCST. */ if ((mcgOutClkState == kMCG_ClkOutStatInt) || (enableMode & kMCG_IrclkEnable)) { while (MCG_S_IRCST_VAL != ircs) { } } return kStatus_Success; } uint32_t CLOCK_CalcPllDiv(uint32_t refFreq, uint32_t desireFreq, uint8_t *prdiv, uint8_t *vdiv) { uint8_t ret_prdiv; /* PRDIV to return. */ uint8_t ret_vdiv; /* VDIV to return. */ uint8_t prdiv_min; /* Min PRDIV value to make reference clock in allowed range. */ uint8_t prdiv_max; /* Max PRDIV value to make reference clock in allowed range. */ uint8_t prdiv_cur; /* PRDIV value for iteration. */ uint8_t vdiv_cur; /* VDIV value for iteration. */ uint32_t ret_freq = 0U; /* PLL output fequency to return. */ uint32_t diff = 0xFFFFFFFFU; /* Difference between desireFreq and return frequency. */ uint32_t ref_div; /* Reference frequency after PRDIV. */ /* Steps: 1. Get allowed prdiv with such rules: 1). refFreq / prdiv >= FSL_FEATURE_MCG_PLL_REF_MIN. 2). refFreq / prdiv <= FSL_FEATURE_MCG_PLL_REF_MAX. 2. For each allowed prdiv, there are two candidate vdiv values: 1). (desireFreq / (refFreq / prdiv)). 2). (desireFreq / (refFreq / prdiv)) + 1. If could get the precise desired frequency, return current prdiv and vdiv directly. Otherwise choose the one which is closer to desired frequency. */ /* Reference frequency is out of range. */ if ((refFreq < FSL_FEATURE_MCG_PLL_REF_MIN) || (refFreq > (FSL_FEATURE_MCG_PLL_REF_MAX * (FSL_FEATURE_MCG_PLL_PRDIV_MAX + FSL_FEATURE_MCG_PLL_PRDIV_BASE)))) { return 0U; } /* refFreq/PRDIV must in a range. First get the allowed PRDIV range. */ prdiv_max = refFreq / FSL_FEATURE_MCG_PLL_REF_MIN; prdiv_min = (refFreq + FSL_FEATURE_MCG_PLL_REF_MAX - 1U) / FSL_FEATURE_MCG_PLL_REF_MAX; /* PRDIV traversal. */ for (prdiv_cur = prdiv_max; prdiv_cur >= prdiv_min; prdiv_cur--) { /* Reference frequency after PRDIV. */ ref_div = refFreq / prdiv_cur; vdiv_cur = desireFreq / ref_div; if ((vdiv_cur < FSL_FEATURE_MCG_PLL_VDIV_BASE - 1U) || (vdiv_cur > FSL_FEATURE_MCG_PLL_VDIV_BASE + 31U)) { /* No VDIV is available with this PRDIV. */ continue; } ret_freq = vdiv_cur * ref_div; if (vdiv_cur >= FSL_FEATURE_MCG_PLL_VDIV_BASE) { if (ret_freq == desireFreq) /* If desire frequency is got. */ { *prdiv = prdiv_cur - FSL_FEATURE_MCG_PLL_PRDIV_BASE; *vdiv = vdiv_cur - FSL_FEATURE_MCG_PLL_VDIV_BASE; return ret_freq; } /* New PRDIV/VDIV is closer. */ if (diff > desireFreq - ret_freq) { diff = desireFreq - ret_freq; ret_prdiv = prdiv_cur; ret_vdiv = vdiv_cur; } } vdiv_cur++; if (vdiv_cur <= (FSL_FEATURE_MCG_PLL_VDIV_BASE + 31U)) { ret_freq += ref_div; /* New PRDIV/VDIV is closer. */ if (diff > ret_freq - desireFreq) { diff = ret_freq - desireFreq; ret_prdiv = prdiv_cur; ret_vdiv = vdiv_cur; } } } if (0xFFFFFFFFU != diff) { /* PRDIV/VDIV found. */ *prdiv = ret_prdiv - FSL_FEATURE_MCG_PLL_PRDIV_BASE; *vdiv = ret_vdiv - FSL_FEATURE_MCG_PLL_VDIV_BASE; ret_freq = (refFreq / ret_prdiv) * ret_vdiv; return ret_freq; } else { /* No proper PRDIV/VDIV found. */ return 0U; } } void CLOCK_EnablePll0(mcg_pll_config_t const *config) { assert(config); uint8_t mcg_c5 = 0U; mcg_c5 |= MCG_C5_PRDIV0(config->prdiv); MCG->C5 = mcg_c5; /* Disable the PLL first. */ MCG->C6 = (MCG->C6 & ~MCG_C6_VDIV0_MASK) | MCG_C6_VDIV0(config->vdiv); /* Set enable mode. */ MCG->C5 |= ((uint32_t)kMCG_PllEnableIndependent | (uint32_t)config->enableMode); /* Wait for PLL lock. */ while (!(MCG->S & MCG_S_LOCK0_MASK)) { } } void CLOCK_SetOsc0MonitorMode(mcg_monitor_mode_t mode) { /* Clear the previous flag, MCG_SC[LOCS0]. */ MCG->SC &= ~MCG_SC_ATMF_MASK; if (kMCG_MonitorNone == mode) { MCG->C6 &= ~MCG_C6_CME0_MASK; } else { if (kMCG_MonitorInt == mode) { MCG->C2 &= ~MCG_C2_LOCRE0_MASK; } else { MCG->C2 |= MCG_C2_LOCRE0_MASK; } MCG->C6 |= MCG_C6_CME0_MASK; } } void CLOCK_SetRtcOscMonitorMode(mcg_monitor_mode_t mode) { uint8_t mcg_c8 = MCG->C8; mcg_c8 &= ~(MCG_C8_CME1_MASK | MCG_C8_LOCRE1_MASK); if (kMCG_MonitorNone != mode) { if (kMCG_MonitorReset == mode) { mcg_c8 |= MCG_C8_LOCRE1_MASK; } mcg_c8 |= MCG_C8_CME1_MASK; } MCG->C8 = mcg_c8; } void CLOCK_SetPll0MonitorMode(mcg_monitor_mode_t mode) { uint8_t mcg_c8; /* Clear previous flag. */ MCG->S = MCG_S_LOLS0_MASK; if (kMCG_MonitorNone == mode) { MCG->C6 &= ~MCG_C6_LOLIE0_MASK; } else { mcg_c8 = MCG->C8; mcg_c8 &= ~MCG_C8_LOCS1_MASK; if (kMCG_MonitorInt == mode) { mcg_c8 &= ~MCG_C8_LOLRE_MASK; } else { mcg_c8 |= MCG_C8_LOLRE_MASK; } MCG->C8 = mcg_c8; MCG->C6 |= MCG_C6_LOLIE0_MASK; } } uint32_t CLOCK_GetStatusFlags(void) { uint32_t ret = 0U; uint8_t mcg_s = MCG->S; if (MCG->SC & MCG_SC_LOCS0_MASK) { ret |= kMCG_Osc0LostFlag; } if (mcg_s & MCG_S_OSCINIT0_MASK) { ret |= kMCG_Osc0InitFlag; } if (MCG->C8 & MCG_C8_LOCS1_MASK) { ret |= kMCG_RtcOscLostFlag; } if (mcg_s & MCG_S_LOLS0_MASK) { ret |= kMCG_Pll0LostFlag; } if (mcg_s & MCG_S_LOCK0_MASK) { ret |= kMCG_Pll0LockFlag; } return ret; } void CLOCK_ClearStatusFlags(uint32_t mask) { uint8_t reg; if (mask & kMCG_Osc0LostFlag) { MCG->SC &= ~MCG_SC_ATMF_MASK; } if (mask & kMCG_RtcOscLostFlag) { reg = MCG->C8; MCG->C8 = reg; } if (mask & kMCG_Pll0LostFlag) { MCG->S = MCG_S_LOLS0_MASK; } } void CLOCK_InitOsc0(osc_config_t const *config) { uint8_t range = CLOCK_GetOscRangeFromFreq(config->freq); OSC_SetCapLoad(OSC0, config->capLoad); OSC_SetExtRefClkConfig(OSC0, &config->oscerConfig); MCG->C2 = ((MCG->C2 & ~OSC_MODE_MASK) | MCG_C2_RANGE(range) | (uint8_t)config->workMode); if ((kOSC_ModeExt != config->workMode) && (OSC0->CR & OSC_CR_ERCLKEN_MASK)) { /* Wait for stable. */ while (!(MCG->S & MCG_S_OSCINIT0_MASK)) { } } } void CLOCK_DeinitOsc0(void) { OSC0->CR = 0U; MCG->C2 &= ~OSC_MODE_MASK; } status_t CLOCK_TrimInternalRefClk(uint32_t extFreq, uint32_t desireFreq, uint32_t *actualFreq, mcg_atm_select_t atms) { uint32_t multi; /* extFreq / desireFreq */ uint32_t actv; /* Auto trim value. */ uint8_t mcg_sc; static const uint32_t trimRange[2][2] = { /* Min Max */ {TRIM_SIRC_MIN, TRIM_SIRC_MAX}, /* Slow IRC. */ {TRIM_FIRC_MIN, TRIM_FIRC_MAX} /* Fast IRC. */ }; if ((extFreq > TRIM_REF_CLK_MAX) || (extFreq < TRIM_REF_CLK_MIN)) { return kStatus_MCG_AtmBusClockInvalid; } /* Check desired frequency range. */ if ((desireFreq < trimRange[atms][0]) || (desireFreq > trimRange[atms][1])) { return kStatus_MCG_AtmDesiredFreqInvalid; } /* Make sure internal reference clock is not used to generate bus clock. Here only need to check (MCG_S_IREFST == 1). */ if (MCG_S_IREFST(kMCG_FllSrcInternal) == (MCG->S & MCG_S_IREFST_MASK)) { return kStatus_MCG_AtmIrcUsed; } multi = extFreq / desireFreq; actv = multi * 21U; if (kMCG_AtmSel4m == atms) { actv *= 128U; } /* Now begin to start trim. */ MCG->ATCVL = (uint8_t)actv; MCG->ATCVH = (uint8_t)(actv >> 8U); mcg_sc = MCG->SC; mcg_sc &= ~(MCG_SC_ATMS_MASK | MCG_SC_LOCS0_MASK); mcg_sc |= (MCG_SC_ATMF_MASK | MCG_SC_ATMS(atms)); MCG->SC = (mcg_sc | MCG_SC_ATME_MASK); /* Wait for finished. */ while (MCG->SC & MCG_SC_ATME_MASK) { } /* Error occurs? */ if (MCG->SC & MCG_SC_ATMF_MASK) { /* Clear the failed flag. */ MCG->SC = mcg_sc; return kStatus_MCG_AtmHardwareFail; } *actualFreq = extFreq / multi; if (kMCG_AtmSel4m == atms) { s_fastIrcFreq = *actualFreq; } else { s_slowIrcFreq = *actualFreq; } return kStatus_Success; } mcg_mode_t CLOCK_GetMode(void) { mcg_mode_t mode = kMCG_ModeError; uint32_t clkst = MCG_S_CLKST_VAL; uint32_t irefst = MCG_S_IREFST_VAL; uint32_t lp = MCG_C2_LP_VAL; uint32_t pllst = MCG_S_PLLST_VAL; /*------------------------------------------------------------------ Mode and Registers ____________________________________________________________________ Mode | CLKST | IREFST | PLLST | LP ____________________________________________________________________ FEI | 00(FLL) | 1(INT) | 0(FLL) | X ____________________________________________________________________ FEE | 00(FLL) | 0(EXT) | 0(FLL) | X ____________________________________________________________________ FBE | 10(EXT) | 0(EXT) | 0(FLL) | 0(NORMAL) ____________________________________________________________________ FBI | 01(INT) | 1(INT) | 0(FLL) | 0(NORMAL) ____________________________________________________________________ BLPI | 01(INT) | 1(INT) | 0(FLL) | 1(LOW POWER) ____________________________________________________________________ BLPE | 10(EXT) | 0(EXT) | X | 1(LOW POWER) ____________________________________________________________________ PEE | 11(PLL) | 0(EXT) | 1(PLL) | X ____________________________________________________________________ PBE | 10(EXT) | 0(EXT) | 1(PLL) | O(NORMAL) ____________________________________________________________________ PBI | 01(INT) | 1(INT) | 1(PLL) | 0(NORMAL) ____________________________________________________________________ PEI | 11(PLL) | 1(INT) | 1(PLL) | X ____________________________________________________________________ ----------------------------------------------------------------------*/ switch (clkst) { case kMCG_ClkOutStatFll: if (kMCG_FllSrcExternal == irefst) { mode = kMCG_ModeFEE; } else { mode = kMCG_ModeFEI; } break; case kMCG_ClkOutStatInt: if (lp) { mode = kMCG_ModeBLPI; } else { { mode = kMCG_ModeFBI; } } break; case kMCG_ClkOutStatExt: if (lp) { mode = kMCG_ModeBLPE; } else { if (kMCG_PllstPll == pllst) { mode = kMCG_ModePBE; } else { mode = kMCG_ModeFBE; } } break; case kMCG_ClkOutStatPll: { mode = kMCG_ModePEE; } break; default: break; } return mode; } status_t CLOCK_SetFeiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void)) { uint8_t mcg_c4; bool change_drs = false; #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) mcg_mode_t mode = CLOCK_GetMode(); if (!((kMCG_ModeFEI == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEE == mode))) { return kStatus_MCG_ModeUnreachable; } #endif mcg_c4 = MCG->C4; /* Errata: ERR007993 Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before reference clock source changes, then reset to previous value after reference clock changes. */ if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL) { change_drs = true; /* Change the LSB of DRST_DRS. */ MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT); } /* Set CLKS and IREFS. */ MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK))) | (MCG_C1_CLKS(kMCG_ClkOutSrcOut) /* CLKS = 0 */ | MCG_C1_IREFS(kMCG_FllSrcInternal)); /* IREFS = 1 */ /* Wait and check status. */ while (kMCG_FllSrcInternal != MCG_S_IREFST_VAL) { } /* Errata: ERR007993 */ if (change_drs) { MCG->C4 = mcg_c4; } /* In FEI mode, the MCG_C4[DMX32] is set to 0U. */ MCG->C4 = (mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs)); /* Check MCG_S[CLKST] */ while (kMCG_ClkOutStatFll != MCG_S_CLKST_VAL) { } /* Wait for FLL stable time. */ if (fllStableDelay) { fllStableDelay(); } return kStatus_Success; } status_t CLOCK_SetFeeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void)) { uint8_t mcg_c4; bool change_drs = false; #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) mcg_mode_t mode = CLOCK_GetMode(); if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode))) { return kStatus_MCG_ModeUnreachable; } #endif mcg_c4 = MCG->C4; /* Errata: ERR007993 Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before reference clock source changes, then reset to previous value after reference clock changes. */ if (kMCG_FllSrcInternal == MCG_S_IREFST_VAL) { change_drs = true; /* Change the LSB of DRST_DRS. */ MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT); } /* Set CLKS and IREFS. */ MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcOut) /* CLKS = 0 */ | MCG_C1_FRDIV(frdiv) /* FRDIV */ | MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */ /* If use external crystal as clock source, wait for it stable. */ if (MCG_C7_OSCSEL(kMCG_OscselOsc) == (MCG->C7 & MCG_C7_OSCSEL_MASK)) { if (MCG->C2 & MCG_C2_EREFS_MASK) { while (!(MCG->S & MCG_S_OSCINIT0_MASK)) { } } } /* Wait and check status. */ while (kMCG_FllSrcExternal != MCG_S_IREFST_VAL) { } /* Errata: ERR007993 */ if (change_drs) { MCG->C4 = mcg_c4; } /* Set DRS and DMX32. */ mcg_c4 = ((mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs))); MCG->C4 = mcg_c4; /* Wait for DRST_DRS update. */ while (MCG->C4 != mcg_c4) { } /* Check MCG_S[CLKST] */ while (kMCG_ClkOutStatFll != MCG_S_CLKST_VAL) { } /* Wait for FLL stable time. */ if (fllStableDelay) { fllStableDelay(); } return kStatus_Success; } status_t CLOCK_SetFbiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void)) { uint8_t mcg_c4; bool change_drs = false; #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) mcg_mode_t mode = CLOCK_GetMode(); if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode) || (kMCG_ModeBLPI == mode))) { return kStatus_MCG_ModeUnreachable; } #endif mcg_c4 = MCG->C4; MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */ /* Errata: ERR007993 Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before reference clock source changes, then reset to previous value after reference clock changes. */ if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL) { change_drs = true; /* Change the LSB of DRST_DRS. */ MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT); } /* Set CLKS and IREFS. */ MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcInternal) /* CLKS = 1 */ | MCG_C1_IREFS(kMCG_FllSrcInternal))); /* IREFS = 1 */ /* Wait and check status. */ while (kMCG_FllSrcInternal != MCG_S_IREFST_VAL) { } /* Errata: ERR007993 */ if (change_drs) { MCG->C4 = mcg_c4; } while (kMCG_ClkOutStatInt != MCG_S_CLKST_VAL) { } MCG->C4 = (mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs)); /* Wait for FLL stable time. */ if (fllStableDelay) { fllStableDelay(); } return kStatus_Success; } status_t CLOCK_SetFbeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void)) { uint8_t mcg_c4; bool change_drs = false; #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) mcg_mode_t mode = CLOCK_GetMode(); if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode) || (kMCG_ModePBE == mode) || (kMCG_ModeBLPE == mode))) { return kStatus_MCG_ModeUnreachable; } #endif /* Change to FLL mode. */ MCG->C6 &= ~MCG_C6_PLLS_MASK; while (MCG->S & MCG_S_PLLST_MASK) { } /* Set LP bit to enable the FLL */ MCG->C2 &= ~MCG_C2_LP_MASK; mcg_c4 = MCG->C4; /* Errata: ERR007993 Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before reference clock source changes, then reset to previous value after reference clock changes. */ if (kMCG_FllSrcInternal == MCG_S_IREFST_VAL) { change_drs = true; /* Change the LSB of DRST_DRS. */ MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT); } /* Set CLKS and IREFS. */ MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcExternal) /* CLKS = 2 */ | MCG_C1_FRDIV(frdiv) /* FRDIV = frdiv */ | MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */ /* If use external crystal as clock source, wait for it stable. */ if (MCG_C7_OSCSEL(kMCG_OscselOsc) == (MCG->C7 & MCG_C7_OSCSEL_MASK)) { if (MCG->C2 & MCG_C2_EREFS_MASK) { while (!(MCG->S & MCG_S_OSCINIT0_MASK)) { } } } /* Wait for Reference clock Status bit to clear */ while (kMCG_FllSrcExternal != MCG_S_IREFST_VAL) { } /* Errata: ERR007993 */ if (change_drs) { MCG->C4 = mcg_c4; } /* Set DRST_DRS and DMX32. */ mcg_c4 = ((mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs))); /* Wait for clock status bits to show clock source is ext ref clk */ while (kMCG_ClkOutStatExt != MCG_S_CLKST_VAL) { } /* Wait for fll stable time. */ if (fllStableDelay) { fllStableDelay(); } return kStatus_Success; } status_t CLOCK_SetBlpiMode(void) { #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) if (MCG_S_CLKST_VAL != kMCG_ClkOutStatInt) { return kStatus_MCG_ModeUnreachable; } #endif /* MCG_CONFIG_CHECK_PARAM */ /* Set LP. */ MCG->C2 |= MCG_C2_LP_MASK; return kStatus_Success; } status_t CLOCK_SetBlpeMode(void) { #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) if (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt) { return kStatus_MCG_ModeUnreachable; } #endif /* Set LP bit to enter BLPE mode. */ MCG->C2 |= MCG_C2_LP_MASK; return kStatus_Success; } status_t CLOCK_SetPbeMode(mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config) { assert(config); /* This function is designed to change MCG to PBE mode from PEE/BLPE/FBE, but with this workflow, the source mode could be all modes except PEI/PBI. */ MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */ /* Change to use external clock first. */ MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal)); /* Wait for CLKST clock status bits to show clock source is ext ref clk */ while ((MCG->S & (MCG_S_IREFST_MASK | MCG_S_CLKST_MASK)) != (MCG_S_IREFST(kMCG_FllSrcExternal) | MCG_S_CLKST(kMCG_ClkOutStatExt))) { } /* Disable PLL first, then configure PLL. */ MCG->C6 &= ~MCG_C6_PLLS_MASK; while (MCG->S & MCG_S_PLLST_MASK) { } /* Configure the PLL. */ { CLOCK_EnablePll0(config); } /* Change to PLL mode. */ MCG->C6 |= MCG_C6_PLLS_MASK; /* Wait for PLL mode changed. */ while (!(MCG->S & MCG_S_PLLST_MASK)) { } return kStatus_Success; } status_t CLOCK_SetPeeMode(void) { #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) mcg_mode_t mode = CLOCK_GetMode(); if (kMCG_ModePBE != mode) { return kStatus_MCG_ModeUnreachable; } #endif /* Change to use PLL/FLL output clock first. */ MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcOut); /* Wait for clock status bits to update */ while (MCG_S_CLKST_VAL != kMCG_ClkOutStatPll) { } return kStatus_Success; } status_t CLOCK_ExternalModeToFbeModeQuick(void) { #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) if (MCG->S & MCG_S_IREFST_MASK) { return kStatus_MCG_ModeInvalid; } #endif /* MCG_CONFIG_CHECK_PARAM */ /* Disable low power */ MCG->C2 &= ~MCG_C2_LP_MASK; MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal)); while (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt) { } /* Disable PLL. */ MCG->C6 &= ~MCG_C6_PLLS_MASK; while (MCG->S & MCG_S_PLLST_MASK) { } return kStatus_Success; } status_t CLOCK_InternalModeToFbiModeQuick(void) { #if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM) if (!(MCG->S & MCG_S_IREFST_MASK)) { return kStatus_MCG_ModeInvalid; } #endif /* Disable low power */ MCG->C2 &= ~MCG_C2_LP_MASK; MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcInternal)); while (MCG_S_CLKST_VAL != kMCG_ClkOutStatInt) { } return kStatus_Success; } status_t CLOCK_BootToFeiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void)) { return CLOCK_SetFeiMode(dmx32, drs, fllStableDelay); } status_t CLOCK_BootToFeeMode( mcg_oscsel_t oscsel, uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void)) { CLOCK_SetExternalRefClkConfig(oscsel); return CLOCK_SetFeeMode(frdiv, dmx32, drs, fllStableDelay); } status_t CLOCK_BootToBlpiMode(uint8_t fcrdiv, mcg_irc_mode_t ircs, uint8_t ircEnableMode) { /* If reset mode is FEI mode, set MCGIRCLK and always success. */ CLOCK_SetInternalRefClkConfig(ircEnableMode, ircs, fcrdiv); /* If reset mode is not BLPI, first enter FBI mode. */ MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcInternal); while (MCG_S_CLKST_VAL != kMCG_ClkOutStatInt) { } /* Enter BLPI mode. */ MCG->C2 |= MCG_C2_LP_MASK; return kStatus_Success; } status_t CLOCK_BootToBlpeMode(mcg_oscsel_t oscsel) { CLOCK_SetExternalRefClkConfig(oscsel); /* Set to FBE mode. */ MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcExternal) /* CLKS = 2 */ | MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */ /* If use external crystal as clock source, wait for it stable. */ if (MCG_C7_OSCSEL(kMCG_OscselOsc) == (MCG->C7 & MCG_C7_OSCSEL_MASK)) { if (MCG->C2 & MCG_C2_EREFS_MASK) { while (!(MCG->S & MCG_S_OSCINIT0_MASK)) { } } } /* Wait for MCG_S[CLKST] and MCG_S[IREFST]. */ while ((MCG->S & (MCG_S_IREFST_MASK | MCG_S_CLKST_MASK)) != (MCG_S_IREFST(kMCG_FllSrcExternal) | MCG_S_CLKST(kMCG_ClkOutStatExt))) { } /* In FBE now, start to enter BLPE. */ MCG->C2 |= MCG_C2_LP_MASK; return kStatus_Success; } status_t CLOCK_BootToPeeMode(mcg_oscsel_t oscsel, mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config) { assert(config); CLOCK_SetExternalRefClkConfig(oscsel); CLOCK_SetPbeMode(pllcs, config); /* Change to use PLL output clock. */ MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcOut); while (MCG_S_CLKST_VAL != kMCG_ClkOutStatPll) { } return kStatus_Success; } /* The transaction matrix. It defines the path for mode switch, the row is for current mode and the column is target mode. For example, switch from FEI to PEE: 1. Current mode FEI, next mode is mcgModeMatrix[FEI][PEE] = FBE, so swith to FBE. 2. Current mode FBE, next mode is mcgModeMatrix[FBE][PEE] = PBE, so swith to PBE. 3. Current mode PBE, next mode is mcgModeMatrix[PBE][PEE] = PEE, so swith to PEE. Thus the MCG mode has changed from FEI to PEE. */ static const mcg_mode_t mcgModeMatrix[8][8] = { {kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE}, /* FEI */ {kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeBLPI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE}, /* FBI */ {kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeBLPI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFBI}, /* BLPI */ {kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE}, /* FEE */ {kMCG_ModeFEI, kMCG_ModeFBI, kMCG_ModeFBI, kMCG_ModeFEE, kMCG_ModeFBE, kMCG_ModeBLPE, kMCG_ModePBE, kMCG_ModePBE}, /* FBE */ {kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeBLPE, kMCG_ModePBE, kMCG_ModePBE}, /* BLPE */ {kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeFBE, kMCG_ModeBLPE, kMCG_ModePBE, kMCG_ModePEE}, /* PBE */ {kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE, kMCG_ModePBE} /* PEE */ /* FEI FBI BLPI FEE FBE BLPE PBE PEE */ }; status_t CLOCK_SetMcgConfig(const mcg_config_t *config) { mcg_mode_t next_mode; status_t status = kStatus_Success; mcg_pll_clk_select_t pllcs = kMCG_PllClkSelPll0; /* If need to change external clock, MCG_C7[OSCSEL]. */ if (MCG_C7_OSCSEL_VAL != config->oscsel) { /* If external clock is in use, change to FEI first. */ if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL) { CLOCK_ExternalModeToFbeModeQuick(); CLOCK_SetFeiMode(config->dmx32, config->drs, (void (*)(void))0); } CLOCK_SetExternalRefClkConfig(config->oscsel); } /* Re-configure MCGIRCLK, if MCGIRCLK is used as system clock source, then change to FEI/PEI first. */ if (MCG_S_CLKST_VAL == kMCG_ClkOutStatInt) { MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */ { CLOCK_SetFeiMode(config->dmx32, config->drs, CLOCK_FllStableDelay); } } /* Configure MCGIRCLK. */ CLOCK_SetInternalRefClkConfig(config->irclkEnableMode, config->ircs, config->fcrdiv); next_mode = CLOCK_GetMode(); do { next_mode = mcgModeMatrix[next_mode][config->mcgMode]; switch (next_mode) { case kMCG_ModeFEI: status = CLOCK_SetFeiMode(config->dmx32, config->drs, CLOCK_FllStableDelay); break; case kMCG_ModeFEE: status = CLOCK_SetFeeMode(config->frdiv, config->dmx32, config->drs, CLOCK_FllStableDelay); break; case kMCG_ModeFBI: status = CLOCK_SetFbiMode(config->dmx32, config->drs, (void (*)(void))0); break; case kMCG_ModeFBE: status = CLOCK_SetFbeMode(config->frdiv, config->dmx32, config->drs, (void (*)(void))0); break; case kMCG_ModeBLPI: status = CLOCK_SetBlpiMode(); break; case kMCG_ModeBLPE: status = CLOCK_SetBlpeMode(); break; case kMCG_ModePBE: /* If target mode is not PBE or PEE, then only need to set CLKS = EXT here. */ if ((kMCG_ModePEE == config->mcgMode) || (kMCG_ModePBE == config->mcgMode)) { { status = CLOCK_SetPbeMode(pllcs, &config->pll0Config); } } else { MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal)); while (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt) { } } break; case kMCG_ModePEE: status = CLOCK_SetPeeMode(); break; default: break; } if (kStatus_Success != status) { return status; } } while (next_mode != config->mcgMode); if (config->pll0Config.enableMode & kMCG_PllEnableIndependent) { CLOCK_EnablePll0(&config->pll0Config); } else { MCG->C5 &= ~(uint32_t)kMCG_PllEnableIndependent; } return kStatus_Success; }