/****************************************************************************** * Filename: interrupt.c * Revised: $Date: 2013-03-20 14:47:53 +0100 (Wed, 20 Mar 2013) $ * Revision: $Revision: 9489 $ * * Description: Driver for the NVIC Interrupt Controller. * * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ //***************************************************************************** // //! \addtogroup interrupt_api //! @{ // //***************************************************************************** #include "hw_ints.h" #include "hw_nvic.h" #include "hw_sys_ctrl.h" #include "cpu.h" #include "debug.h" #include "interrupt.h" //***************************************************************************** // // This is a mapping between priority grouping encodings and the number of // preemption priority bits. // //***************************************************************************** static const uint32_t g_pui32Priority[] = { NVIC_APINT_PRIGROUP_0_8, NVIC_APINT_PRIGROUP_1_7, NVIC_APINT_PRIGROUP_2_6, NVIC_APINT_PRIGROUP_3_5, NVIC_APINT_PRIGROUP_4_4, NVIC_APINT_PRIGROUP_5_3, NVIC_APINT_PRIGROUP_6_2, NVIC_APINT_PRIGROUP_7_1 }; //***************************************************************************** // // This is a mapping between interrupt number and the register that contains // the priority encoding for that interrupt. // //***************************************************************************** static const uint32_t g_pui32Regs[] = { 0, NVIC_SYS_PRI1, NVIC_SYS_PRI2, NVIC_SYS_PRI3, NVIC_PRI0, NVIC_PRI1, NVIC_PRI2, NVIC_PRI3, NVIC_PRI4, NVIC_PRI5, NVIC_PRI6, NVIC_PRI7, NVIC_PRI8, NVIC_PRI9, NVIC_PRI10, NVIC_PRI11, NVIC_PRI12, NVIC_PRI13, NVIC_PRI14, NVIC_PRI15, NVIC_PRI16, NVIC_PRI17, NVIC_PRI18, NVIC_PRI19, NVIC_PRI20, NVIC_PRI21, NVIC_PRI22, NVIC_PRI23, NVIC_PRI24, NVIC_PRI25, NVIC_PRI26, NVIC_PRI27, NVIC_PRI28, NVIC_PRI29, NVIC_PRI30, NVIC_PRI31, NVIC_PRI32, NVIC_PRI33, NVIC_PRI34, NVIC_PRI35, NVIC_PRI36 }; //***************************************************************************** // // This is a mapping between interrupt number (for the peripheral interrupts // only) and the register that contains the interrupt enable for that // interrupt. // //***************************************************************************** static const uint32_t g_pui32EnRegs[] = { NVIC_EN0, NVIC_EN1, NVIC_EN2, NVIC_EN3, NVIC_EN4 }; //***************************************************************************** // // This is a mapping between interrupt number (for the peripheral interrupts // only) and the register that contains the interrupt disable for that // interrupt. // //***************************************************************************** static const uint32_t g_pui32DisRegs[] = { NVIC_DIS0, NVIC_DIS1, NVIC_DIS2, NVIC_DIS3, NVIC_DIS4 }; //***************************************************************************** // // This is a mapping between interrupt number (for the peripheral interrupts // only) and the register that contains the interrupt pend for that interrupt. // //***************************************************************************** static const uint32_t g_pui32PendRegs[] = { NVIC_PEND0, NVIC_PEND1, NVIC_PEND2, NVIC_PEND3, NVIC_PEND4 }; //***************************************************************************** // // This is a mapping between interrupt number (for the peripheral interrupts // only) and the register that contains the interrupt unpend for that // interrupt. // //***************************************************************************** static const uint32_t g_pui32UnpendRegs[] = { NVIC_UNPEND0, NVIC_UNPEND1, NVIC_UNPEND2, NVIC_UNPEND3, NVIC_UNPEND4 }; //***************************************************************************** // //! \internal //! The default interrupt handler //! //! This is the default interrupt handler for all interrupts. It simply loops //! forever so that the system state is preserved for observation by a //! debugger. Since interrupts should be disabled before unregistering the //! corresponding handler, this should never be called. //! //! \return None // //***************************************************************************** static void IntDefaultHandler(void) { // // Go into an infinite loop. // while(1) { } } //***************************************************************************** // // The processor vector table // // This contains a list of the handlers for the various interrupt sources in // the system. The layout of this list is defined by the hardware; assertion // of an interrupt causes the processor to start executing directly at the // address given in the corresponding location in this list. // //***************************************************************************** #if defined(__ICCARM__) #pragma data_alignment=1024 static __no_init void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void) @ "VTABLE"; #elif defined(__TI_COMPILER_VERSION__) || defined(DOXYGEN) #pragma DATA_ALIGN(g_pfnRAMVectors, 1024) #pragma DATA_SECTION(g_pfnRAMVectors, ".vtable") void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void); #else static __attribute__((section("vtable"))) void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void) __attribute__((aligned(1024))); #endif //***************************************************************************** // //! Enables the processor interrupt //! //! This function allows the processor to respond to interrupts. This does not //! affect the set of interrupts enabled in the interrupt controller; it just //! gates the single interrupt from the controller to the processor. //! //! \return Returns \b true if interrupts were disabled when the function was //! called or \b false if they were initially enabled. // //***************************************************************************** bool IntMasterEnable(void) { // // Enable processor interrupts. // return(CPUcpsie()); } //***************************************************************************** // //! Disables the processor interrupt //! //! This function prevents the processor from receiving interrupts. This does //! not affect the set of interrupts enabled in the interrupt controller; it //! just gates the single interrupt from the controller to the processor. //! //! \return Returns \b true if interrupts were already disabled when the //! function was called or \b false if they were initially enabled. // //***************************************************************************** bool IntMasterDisable(void) { // // Disable processor interrupts. // return(CPUcpsid()); } //***************************************************************************** // //! Registers a function to be called when an interrupt occurs //! //! \param ui32Interrupt specifies the interrupt in question. //! \param pfnHandler is a pointer to the function to be called. //! //! This function specifies the handler function to be called when the //! given interrupt is asserted to the processor. When the interrupt occurs, //! if it is enabled (through IntEnable()), the handler function is called in //! interrupt context. Because the handler function can preempt other code, care //! must be taken to protect memory or peripherals that are accessed by the //! handler and other nonhandler code. //! //! \note This function (directly or indirectly through a peripheral //! driver interrupt register function) moves the interrupt vector table from //! flash to SRAM. Therefore, care must be taken when linking the application //! to ensure that the SRAM vector table is located at the beginning of SRAM; //! otherwise NVIC will not look in the correct portion of memory for the //! vector table (it requires the vector table be on a 1-kB memory alignment). //! Normally, the SRAM vector table is so placed through the use of linker //! scripts. See the discussion of compile-time versus runtime interrupt handler //! registration in the introduction to this chapter. //! //! \return None // //***************************************************************************** void IntRegister(uint32_t ui32Interrupt, void (*pfnHandler)(void)) { uint32_t ui32Idx, ui32Value; // // Check the arguments. // ASSERT(ui32Interrupt < NUM_INTERRUPTS); // Check below could be removed in final application #ifdef CC2538_USE_ALTERNATE_INTERRUPT_MAP ASSERT(IntAltMapIsEnabled()); #else ASSERT(~IntAltMapIsEnabled()); #endif // // Make sure that the RAM vector table is correctly aligned. // ASSERT(((uint32_t)g_pfnRAMVectors & 0x000003ff) == 0); // // See if the RAM vector table has been initialized. // if(HWREG(NVIC_VTABLE) != (uint32_t)g_pfnRAMVectors) { // // Copy the vector table from the beginning of FLASH to the RAM vector // table. // ui32Value = HWREG(NVIC_VTABLE); for(ui32Idx = 0; ui32Idx < NUM_INTERRUPTS; ui32Idx++) { g_pfnRAMVectors[ui32Idx] = (void (*)(void))HWREG((ui32Idx * 4) + ui32Value); } // // Point NVIC at the RAM vector table. // HWREG(NVIC_VTABLE) = (uint32_t)g_pfnRAMVectors; } // // Save the interrupt handler. // g_pfnRAMVectors[ui32Interrupt] = pfnHandler; } //***************************************************************************** // //! Unregisters the function to be called when an interrupt occurs //! //! \param ui32Interrupt specifies the interrupt in question. //! //! This function indicates that no handler should be called when the //! given interrupt is asserted to the processor. The interrupt source is //! automatically disabled (through IntDisable()) if necessary. //! //! \sa See IntRegister() for important information about registering interrupt //! handlers. //! //! \return None // //***************************************************************************** void IntUnregister(uint32_t ui32Interrupt) { // // Check the arguments. // ASSERT(ui32Interrupt < NUM_INTERRUPTS); // // Check that at least one interrupt was dynamically registered // (by calling IntRegister()) // ASSERT(HWREG(NVIC_VTABLE) == (uint32_t)g_pfnRAMVectors); // Check below could be removed in final application #ifdef CC2538_USE_ALTERNATE_INTERRUPT_MAP ASSERT(IntAltMapIsEnabled()); #else ASSERT(~IntAltMapIsEnabled()); #endif // // Reset the interrupt handler. // g_pfnRAMVectors[ui32Interrupt] = IntDefaultHandler; } //***************************************************************************** // //! Sets the priority grouping of the interrupt controller //! //! \param ui32Bits specifies the number of bits of preemptable priority. //! //! This function specifies the split between preemptable priority levels and //! subpriority levels in the interrupt priority specification. The range of //! the grouping values depend on the hardware implementation; on //! the CC2538 device family, 3 bits are available for hardware interrupt //! prioritization and therefore priority grouping values of three through //! seven have the same effect. //! //! \return None // //***************************************************************************** void IntPriorityGroupingSet(uint32_t ui32Bits) { // // Check the arguments. // ASSERT(ui32Bits < NUM_PRIORITY); // // Set the priority grouping. // HWREG(NVIC_APINT) = NVIC_APINT_VECTKEY | g_pui32Priority[ui32Bits]; } //***************************************************************************** // //! Gets the priority grouping of the interrupt controller //! //! This function returns the split between preemptable priority levels and //! subpriority levels in the interrupt priority specification. //! //! \return Returns the number of bits of preemptable priority // //***************************************************************************** uint32_t IntPriorityGroupingGet(void) { uint32_t ui32Loop, ui32Value; // // Read the priority grouping. // ui32Value = HWREG(NVIC_APINT) & NVIC_APINT_PRIGROUP_M; // // Loop through the priority grouping values. // for(ui32Loop = 0; ui32Loop < NUM_PRIORITY; ui32Loop++) { // // Stop looping if this value matches. // if(ui32Value == g_pui32Priority[ui32Loop]) { break; } } // // Return the number of priority bits. // return(ui32Loop); } //***************************************************************************** // //! Sets the priority of an interrupt //! //! \param ui32Interrupt specifies the interrupt in question. //! \param ui8Priority specifies the priority of the interrupt. //! //! This function sets the priority of an interrupt. When multiple //! interrupts are asserted simultaneously, those with the highest priority //! are processed before the lower priority interrupts. Smaller numbers //! correspond to higher interrupt priorities; priority 0 is the highest //! interrupt priority. //! //! The hardware priority mechanism will looks only at the upper N bits of the //! priority level (where N is 3 for the CC2538 device family), so any //! prioritization must be performed in those bits. The remaining bits can be //! used to subprioritize the interrupt sources, and may be used by the //! hardware priority mechanism on a future part. This arrangement allows //! priorities to migrate to different NVIC implementations without changing //! the gross prioritization of the interrupts. //! Thus for CC2538 to set a priority of 3, the parameter \e ui8Priority must //! be set to (3<<5). //! //! \return None // //***************************************************************************** void IntPrioritySet(uint32_t ui32Interrupt, uint8_t ui8Priority) { uint32_t ui32Temp; // // Check the arguments. // ASSERT((ui32Interrupt >= 4) && (ui32Interrupt < NUM_INTERRUPTS)); // // Set the interrupt priority. // ui32Temp = HWREG(g_pui32Regs[ui32Interrupt >> 2]); ui32Temp &= ~(0xFF << (8 * (ui32Interrupt & 3))); ui32Temp |= ui8Priority << (8 * (ui32Interrupt & 3)); HWREG(g_pui32Regs[ui32Interrupt >> 2]) = ui32Temp; } //***************************************************************************** // //! Gets the priority of an interrupt //! //! \param ui32Interrupt specifies the interrupt in question. //! //! This function gets the priority of an interrupt. See IntPrioritySet() for //! a definition of the priority value. //! //! \return Returns the interrupt priority, or -1 if an invalid interrupt was //! specified // //***************************************************************************** int32_t IntPriorityGet(uint32_t ui32Interrupt) { // // Check the arguments. // ASSERT((ui32Interrupt >= 4) && (ui32Interrupt < NUM_INTERRUPTS)); // // Return the interrupt priority. // return((HWREG(g_pui32Regs[ui32Interrupt >> 2]) >> (8 * (ui32Interrupt & 3))) & 0xFF); } //***************************************************************************** // //! Enables an interrupt //! //! \param ui32Interrupt specifies the interrupt to be enabled. //! //! This function enables the specified interrupt in the interrupt controller. //! Other enables for the interrupt (such as at the peripheral level) are //! unaffected by this function. //! //! \return None // //***************************************************************************** void IntEnable(uint32_t ui32Interrupt) { // // Check the arguments. // ASSERT(ui32Interrupt < NUM_INTERRUPTS); // // Determine the interrupt to enable. // if(ui32Interrupt == FAULT_MPU) { // // Enable the MemManage interrupt. // HWREG(NVIC_SYS_HND_CTRL) |= NVIC_SYS_HND_CTRL_MEM; } else if(ui32Interrupt == FAULT_BUS) { // // Enable the bus fault interrupt. // HWREG(NVIC_SYS_HND_CTRL) |= NVIC_SYS_HND_CTRL_BUS; } else if(ui32Interrupt == FAULT_USAGE) { // // Enable the usage fault interrupt. // HWREG(NVIC_SYS_HND_CTRL) |= NVIC_SYS_HND_CTRL_USAGE; } else if(ui32Interrupt == FAULT_SYSTICK) { // // Enable the System Tick interrupt. // HWREG(NVIC_ST_CTRL) |= NVIC_ST_CTRL_INTEN; } else if(ui32Interrupt >= 16) { // // Enable the general interrupt. // HWREG(g_pui32EnRegs[(ui32Interrupt - 16) / 32]) = 1 << ((ui32Interrupt - 16) & 31); } } //***************************************************************************** // //! Disables an interrupt //! //! \param ui32Interrupt specifies the interrupt to be disabled. //! //! This function disables specified interrupt in the interrupt controller. //! Other enables for the interrupt (such as at the peripheral level) are //! unaffected by this function. //! //! \return None // //***************************************************************************** void IntDisable(uint32_t ui32Interrupt) { // // Check the arguments. // ASSERT(ui32Interrupt < NUM_INTERRUPTS); // // Determine the interrupt to disable. // if(ui32Interrupt == FAULT_MPU) { // // Disable the MemManage interrupt. // HWREG(NVIC_SYS_HND_CTRL) &= ~(NVIC_SYS_HND_CTRL_MEM); } else if(ui32Interrupt == FAULT_BUS) { // // Disable the bus fault interrupt. // HWREG(NVIC_SYS_HND_CTRL) &= ~(NVIC_SYS_HND_CTRL_BUS); } else if(ui32Interrupt == FAULT_USAGE) { // // Disable the usage fault interrupt. // HWREG(NVIC_SYS_HND_CTRL) &= ~(NVIC_SYS_HND_CTRL_USAGE); } else if(ui32Interrupt == FAULT_SYSTICK) { // // Disable the System Tick interrupt. // HWREG(NVIC_ST_CTRL) &= ~(NVIC_ST_CTRL_INTEN); } else if(ui32Interrupt >= 16) { // // Disable the general interrupt. // HWREG(g_pui32DisRegs[(ui32Interrupt - 16) / 32]) = 1 << ((ui32Interrupt - 16) & 31); } } //***************************************************************************** // //! Pends an interrupt //! //! \param ui32Interrupt specifies the interrupt to be pended. //! //! This function pends the specified interrupt in the interrupt controller. //! This causes the interrupt controller to execute the corresponding interrupt //! handler at the next available time, based on the current interrupt state //! priorities. For example, if called by a higher priority interrupt handler, //! the specified interrupt handler is not called until after the current //! interrupt handler executes. The interrupt must have been enabled for //! it to be called. //! //! \return None // //***************************************************************************** void IntPendSet(uint32_t ui32Interrupt) { // // Check the arguments. // ASSERT(ui32Interrupt < NUM_INTERRUPTS); // // Determine the interrupt to pend. // if(ui32Interrupt == FAULT_NMI) { // // Pend the NMI interrupt. // HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_NMI_SET; } else if(ui32Interrupt == FAULT_PENDSV) { // // Pend the PendSV interrupt. // HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV; } else if(ui32Interrupt == FAULT_SYSTICK) { // // Pend the SysTick interrupt. // HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_PENDSTSET; } else if(ui32Interrupt >= 16) { // // Pend the general interrupt. // HWREG(g_pui32PendRegs[(ui32Interrupt - 16) / 32]) = 1 << ((ui32Interrupt - 16) & 31); } } //***************************************************************************** // //! Unpends an interrupt //! //! \param ui32Interrupt specifies the interrupt to be unpended. //! //! This function unpends the specified interrupt in the interrupt controller. //! This will cause any previously generated interrupts that have not been //! handled yet (due to higher priority interrupts or the interrupt no having //! been enabled yet) to be discarded. //! //! \return None // //***************************************************************************** void IntPendClear(uint32_t ui32Interrupt) { // // Check the arguments. // ASSERT(ui32Interrupt < NUM_INTERRUPTS); // // Determine the interrupt to unpend. // if(ui32Interrupt == FAULT_PENDSV) { // // Unpend the PendSV interrupt. // HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_UNPEND_SV; } else if(ui32Interrupt == FAULT_SYSTICK) { // // Unpend the SysTick interrupt. // HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_PENDSTCLR; } else if(ui32Interrupt >= 16) { // // Unpend the general interrupt. // HWREG(g_pui32UnpendRegs[(ui32Interrupt - 16) / 32]) = 1 << ((ui32Interrupt - 16) & 31); } } //***************************************************************************** // //! Sets the priority masking level //! //! \param ui32PriorityMask is the priority level that will be masked. //! //! This function sets the interrupt priority masking level so that all //! interrupts at the specified or lesser priority level is masked. This //! can be used to globally disable a set of interrupts with priority below //! a predetermined threshold. A value of 0 disables priority //! masking. //! //! Smaller numbers correspond to higher interrupt priorities. For example, //! a priority level mask of 4 allows interrupts of priority level 0-3, //! and interrupts with a numerical priority of 4 and greater are blocked. //! //! The hardware priority mechanism looks only at the upper N bits of the //! priority level (where N is 3 for the CC2538 device family), so any //! prioritization must be performed in those bits. //! //! \return None // //***************************************************************************** void IntPriorityMaskSet(uint32_t ui32PriorityMask) { CPUbasepriSet(ui32PriorityMask); } //***************************************************************************** // //! Gets the priority masking level //! //! This function gets the current setting of the interrupt priority masking //! level. The value returned is the priority level such that all interrupts //! of that priority and lesser priorities are masked. A value of 0 disables //! priority masking. //! //! Smaller numbers correspond to higher interrupt priorities. For example, //! a priority level mask of 4 allows interrupts of priority level 0-3, //! and interrupts with a numerical priority of 4 and greater will be blocked. //! //! The hardware priority mechanism looks only at the upper N bits of the //! priority level (where N is 3 for the CC2538 device family), so any //! prioritization must be performed in those bits. //! //! \return Returns the value of the interrupt priority level mask // //***************************************************************************** uint32_t IntPriorityMaskGet(void) { return(CPUbasepriGet()); } //***************************************************************************** // //! Enables the alternate interrupt mapping //! //! This function enables the alternate (that is, smaller) interrupt map. //! //! \sa See also IntAltMapDisable() and IntAltMapIsEnabled(). //! //! \return None // //***************************************************************************** void IntAltMapEnable(void) { HWREG(SYS_CTRL_I_MAP) |= SYS_CTRL_I_MAP_ALTMAP; } //***************************************************************************** // //! Disable the alternate interrupt mapping //! //! This function disables the alternate (that is, smaller) interrupt map. //! //! \sa See also IntAltMapDisable() and IntAltMapIsEnabled(). //! //! \return None // //***************************************************************************** void IntAltMapDisable(void) { HWREG(SYS_CTRL_I_MAP) &= ~SYS_CTRL_I_MAP_ALTMAP; } //***************************************************************************** // //! Checks to see if the Alternate Interrupt Mapping is in use //! //! \sa See also IntAltMapDisable() and IntAltMapIsEnabled(). //! //! \return Returns \b true if the Alternate Mapping is in use and \b false //! otherwise. // //***************************************************************************** bool IntAltMapIsEnabled(void) { if(HWREG(SYS_CTRL_I_MAP) & SYS_CTRL_I_MAP_ALTMAP) { return (true); } else { return (false); } } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************