/* * Copyright 2018 NXP * All rights reserved. * * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_puf.h" #include "fsl_clock.h" #include "fsl_reset.h" #include "fsl_common.h" static void puf_wait_usec(uint32_t usec, uint32_t coreClockFrequencyMHz) { while (usec > 0) { usec--; /* number of MHz is directly number of core clocks to wait 1 usec. */ /* the while loop below is actually 4 clocks so divide by 4 for ~1 usec */ register uint32_t ticksCount = coreClockFrequencyMHz / 4u + 1u; while (ticksCount--) { } } } static status_t puf_waitForInit(PUF_Type *base) { status_t status = kStatus_Fail; /* wait until status register reads non-zero. All zero is not valid. It should be BUSY or OK or ERROR */ while (0 == base->STAT) { } /* wait if busy */ while ((base->STAT & PUF_STAT_BUSY_MASK) != 0) { } /* return status */ if (base->STAT & (PUF_STAT_SUCCESS_MASK | PUF_STAT_ERROR_MASK)) { status = kStatus_Success; } return status; } static void puf_powerOn(PUF_Type *base) { #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) /* RT6xxs */ base->PWRCTRL = 0x5u; base->PWRCTRL = 0xDu; base->PWRCTRL = 0x9u; #else /* !FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */ /* Niobe4 & Aruba FL */ base->PWRCTRL = PUF_PWRCTRL_RAMON_MASK; while (0 == (PUF_PWRCTRL_RAMSTAT_MASK & base->PWRCTRL)) { } #endif /* FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */ } static status_t puf_powerCycle(PUF_Type *base, uint32_t dischargeTimeMsec, uint32_t coreClockFrequencyHz) { #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) /* RT6xxs */ uint32_t coreClockFrequencyMHz = coreClockFrequencyHz / 1000000u; base->PWRCTRL = 0xDu; /* disable RAM CK */ /* enter ASPS mode */ base->PWRCTRL = 0xCu; /* SLEEP = 1 */ base->PWRCTRL = 0x8u; /* enable RAM CK */ base->PWRCTRL = 0xF8u; /* SLEEP=1, PSW*=1 */ /* Wait enough time to discharge fully */ puf_wait_usec(dischargeTimeMsec * 1000u, coreClockFrequencyHz / 1000000u); /* write PWRCTRL=0x38. wait time > 1 us */ base->PWRCTRL = 0x38u; /* SLEEP=1. PSWSMALL*=0. PSWLARGE*=1. */ puf_wait_usec(1, coreClockFrequencyMHz); /* write PWRCTRL=0x8. wait time > 1 us */ base->PWRCTRL = 0x08u; /* SLEEP=1. PSWSMALL*=0. PSWLARGE*=0 */ puf_wait_usec(1, coreClockFrequencyMHz); base->PWRCTRL = 0xCu; base->PWRCTRL = 0xDu; base->PWRCTRL = 0x9u; /* Generate INITN low pulse */ base->PWRCTRL = 0xDu; base->PWRCTRL = 0x5u; base->PWRCTRL = 0x1u; #else /* Niobe4 & Aruba FL */ base->PWRCTRL = 0x0u; while (PUF_PWRCTRL_RAMSTAT_MASK & base->PWRCTRL) { } /* Wait enough time to discharge fully */ puf_wait_usec(dischargeTimeMsec * 1000u, coreClockFrequencyHz / 1000000u); #endif /* Reset PUF and reenable power to PUF SRAM */ RESET_PeripheralReset(kPUF_RST_SHIFT_RSTn); puf_powerOn(base); return kStatus_Success; } /*! * brief Initialize PUF * * This function enables power to PUF block and waits until the block initializes. * * param base PUF peripheral base address * param dischargeTimeMsec time in ms to wait for PUF SRAM to fully discharge * param coreClockFrequencyHz core clock frequency in Hz * return Status of the init operation */ status_t PUF_Init(PUF_Type *base, uint32_t dischargeTimeMsec, uint32_t coreClockFrequencyHz) { status_t status = kStatus_Fail; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) CLOCK_EnableClock(kCLOCK_Puf); #endif /* Reset PUF */ RESET_PeripheralReset(kPUF_RST_SHIFT_RSTn); /* Enable power to PUF SRAM */ puf_powerOn(base); /* Wait for peripheral to become ready */ status = puf_waitForInit(base); /* In case of error or enroll & start not allowed, do power-cycle */ if ((status != kStatus_Success) || ((PUF_ALLOW_ALLOWENROLL_MASK | PUF_ALLOW_ALLOWSTART_MASK) != (base->ALLOW & (PUF_ALLOW_ALLOWENROLL_MASK | PUF_ALLOW_ALLOWSTART_MASK)))) { puf_powerCycle(base, dischargeTimeMsec, coreClockFrequencyHz); status = puf_waitForInit(base); } return status; } /*! * brief Denitialize PUF * * This function disables power to PUF SRAM and peripheral clock. * * param base PUF peripheral base address */ void PUF_Deinit(PUF_Type *base, uint32_t dischargeTimeMsec, uint32_t coreClockFrequencyHz) { #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) /* RT6xxs */ base->PWRCTRL = 0xDu; /* disable RAM CK */ /* enter ASPS mode */ base->PWRCTRL = 0xCu; /* SLEEP = 1 */ base->PWRCTRL = 0x8u; /* enable RAM CK */ base->PWRCTRL = 0xF8u; /* SLEEP=1, PSW*=1 */ #else /* !FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */ /* Niobe4 & Aruba FL */ base->PWRCTRL = 0x00u; #endif /* Wait enough time to discharge fully */ puf_wait_usec(dischargeTimeMsec * 1000u, coreClockFrequencyHz / 1000000u); RESET_SetPeripheralReset(kPUF_RST_SHIFT_RSTn); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) CLOCK_DisableClock(kCLOCK_Puf); #endif } /*! * brief Enroll PUF * * This function derives a digital fingerprint, generates the corresponding Activation Code (AC) * and returns it to be stored in an NVM or a file. This step needs to be * performed only once for each device. This function may be permanently disallowed by a fuse. * * param base PUF peripheral base address * param[out] activationCode Word aligned address of the resulting activation code. * param activationCodeSize Size of the activationCode buffer in bytes. Shall be 1192 bytes. * return Status of enroll operation. */ status_t PUF_Enroll(PUF_Type *base, uint8_t *activationCode, size_t activationCodeSize) { status_t status = kStatus_Fail; uint32_t *activationCodeAligned = NULL; register uint32_t temp32 = 0; /* check that activation code buffer size is at least 1192 bytes */ if (activationCodeSize < PUF_ACTIVATION_CODE_SIZE) { return kStatus_InvalidArgument; } /* only work with aligned activationCode */ if (0x3u & (uintptr_t)activationCode) { return kStatus_InvalidArgument; } activationCodeAligned = (uint32_t *)(uintptr_t)activationCode; /* check if ENROLL is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWENROLL_MASK)) { return kStatus_Fail; } /* write PUF Enroll command */ base->CTRL = PUF_CTRL_ENROLL_MASK; /* check status */ while (0 == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* read out AC */ while (0 != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0 != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT)) { temp32 = base->CODEOUTPUT; if (activationCodeSize >= sizeof(uint32_t)) { *activationCodeAligned = temp32; activationCodeAligned++; activationCodeSize -= sizeof(uint32_t); } } } if ((base->STAT & PUF_STAT_SUCCESS_MASK) && (activationCodeSize == 0)) { status = kStatus_Success; } return status; } /*! * brief Start PUF * * The Activation Code generated during the Enroll operation is used to * reconstruct the digital fingerprint. This needs to be done after every power-up * and reset. * * param base PUF peripheral base address * param activationCode Word aligned address of the input activation code. * param activationCodeSize Size of the activationCode buffer in bytes. Shall be 1192 bytes. * return Status of start operation. */ status_t PUF_Start(PUF_Type *base, const uint8_t *activationCode, size_t activationCodeSize) { status_t status = kStatus_Fail; const uint32_t *activationCodeAligned = NULL; register uint32_t temp32 = 0; /* check that activation code size is at least 1192 bytes */ if (activationCodeSize < 1192) { return kStatus_InvalidArgument; } /* only work with aligned activationCode */ if (0x3u & (uintptr_t)activationCode) { return kStatus_InvalidArgument; } activationCodeAligned = (const uint32_t *)(uintptr_t)activationCode; /* check if START is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSTART_MASK)) { return kStatus_Fail; } /* run PUF Start command */ base->CTRL = PUF_CTRL_START_MASK; /* check status */ while (0 == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy send AC */ while (0 != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0 != (PUF_STAT_CODEINREQ_MASK & base->STAT)) { if (activationCodeSize >= sizeof(uint32_t)) { temp32 = *activationCodeAligned; activationCodeAligned++; activationCodeSize -= sizeof(uint32_t); } base->CODEINPUT = temp32; } } /* get status */ if (0 != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } /*! * brief Set intrinsic key * * The digital fingerprint generated during the Enroll/Start * operations is used to generate a Key Code (KC) that defines a unique intrinsic * key. This KC is returned to be stored in an NVM or a file. This operation * needs to be done only once for each intrinsic key. * Each time a Set Intrinsic Key operation is executed a new unique key is * generated. * * param base PUF peripheral base address * param keyIndex PUF key index register * param keySize Size of the intrinsic key to generate in bytes. * param[out] keyCode Word aligned address of the resulting key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize). * return Status of set intrinsic key operation. */ status_t PUF_SetIntrinsicKey( PUF_Type *base, puf_key_index_register_t keyIndex, size_t keySize, uint8_t *keyCode, size_t keyCodeSize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; register uint32_t temp32 = 0; /* check if SET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0x3u & (uintptr_t)keyCode) { return kStatus_InvalidArgument; } /* Check that keySize is in the correct range and that it is multiple of 8 */ if ((keySize < kPUF_KeySizeMin) || (keySize > kPUF_KeySizeMax) || (keySize & 0x7)) { return kStatus_InvalidArgument; } /* check that keyCodeSize is correct for given keySize */ if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize)) { return kStatus_InvalidArgument; } if ((uint32_t)keyIndex > kPUF_KeyIndexMax) { return kStatus_InvalidArgument; } keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; /* program the key size and index */ base->KEYSIZE = keySize >> 3; base->KEYINDEX = (uint32_t)keyIndex; /* start generate key command */ base->CTRL = PUF_CTRL_GENERATEKEY_MASK; /* wait till command is accepted */ while (0 == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy read KC */ while (0 != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0 != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT)) { temp32 = base->CODEOUTPUT; if (keyCodeSize >= sizeof(uint32_t)) { *keyCodeAligned = temp32; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } } } /* get status */ if (0 != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } /*! * brief Set user key * * The digital fingerprint generated during the Enroll/Start * operations and a user key (UK) provided as input are used to * generate a Key Code (KC). This KC is sent returned to be stored * in an NVM or a file. This operation needs to be done only once for each user key. * * param base PUF peripheral base address * param keyIndex PUF key index register * param userKey Word aligned address of input user key. * param userKeySize Size of the input user key in bytes. * param[out] keyCode Word aligned address of the resulting key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(userKeySize). * return Status of set user key operation. */ status_t PUF_SetUserKey(PUF_Type *base, puf_key_index_register_t keyIndex, const uint8_t *userKey, size_t userKeySize, uint8_t *keyCode, size_t keyCodeSize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; const uint32_t *userKeyAligned = NULL; // RK why const? register uint32_t temp32 = 0; /* check if SET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0x3u & (uintptr_t)keyCode) { return kStatus_InvalidArgument; } /* Check that userKeySize is in the correct range and that it is multiple of 8 */ if ((userKeySize < kPUF_KeySizeMin) || (userKeySize > kPUF_KeySizeMax) || (userKeySize & 0x7)) { return kStatus_InvalidArgument; } /* check that keyCodeSize is correct for given userKeySize */ if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(userKeySize)) { return kStatus_InvalidArgument; } if ((uint32_t)keyIndex > kPUF_KeyIndexMax) { return kStatus_InvalidArgument; } keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; userKeyAligned = (const uint32_t *)(uintptr_t)userKey; /* program the key size and index */ base->KEYSIZE = userKeySize >> 3; /* convert to 64-bit blocks */ base->KEYINDEX = (uint32_t)keyIndex; /*if key index 0 - to be sent to AES, PRINCE, change endianess and */ if (keyIndex == 0) { uint32_t * pa = (uint32_t *)userKeyAligned; uint32_t * pd = (uint32_t *)(&userKeyAligned[userKeySize >> 2]-1); uint32_t i; for(i = 0; i < (userKeySize >> 3); i++) { temp32 = *pa; *pa++ = swap_bytes(*pd); *pd-- = swap_bytes(temp32); } } /* begin */ base->CTRL = PUF_CTRL_SETKEY_MASK; /* wait till command is accepted */ while (0 == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy write UK and read KC */ while (0 != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0 != (PUF_STAT_KEYINREQ_MASK & base->STAT)) { if (userKeySize >= sizeof(uint32_t)) { temp32 = *userKeyAligned; userKeyAligned++; userKeySize -= sizeof(uint32_t); } base->KEYINPUT = temp32; } if (0 != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT)) { temp32 = base->CODEOUTPUT; if (keyCodeSize >= sizeof(uint32_t)) { *keyCodeAligned = temp32; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } } } /* get status */ if (0 != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } static status_t puf_getHwKey(PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; register uint32_t temp32 = 0; keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; /* begin */ base->CTRL = PUF_CTRL_GETKEY_MASK; /* wait till command is accepted */ while (0 == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy send KC, key is reconstructed to HW bus */ while (0 != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0 != (PUF_STAT_CODEINREQ_MASK & base->STAT)) { if (keyCodeSize >= sizeof(uint32_t)) { temp32 = *keyCodeAligned; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } base->CODEINPUT = temp32; } } /* get status */ if (0 != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } /*! * brief Reconstruct hw bus key from a key code * * The digital fingerprint generated during the Start operation and the KC * generated during a Set Key operation (Set intrinsic key or Set user key) are used to retrieve a stored key. This * operation needs to be done every time a key is needed. * This function accepts only Key Codes created for PUF index register kPUF_KeyIndex_00. * Such a key is output directly to a dedicated hardware bus. The reconstructed key is not exposed to system memory. * * param base PUF peripheral base address * param keyCode Word aligned address of the input key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize). * param keySlot key slot to output on hw bus. Parameter is ignored on devices with less than two key slots. * param keyMask key masking value. Shall be random for each POR/reset. Value does not have to be cryptographicaly * secure. * return Status of get key operation. */ status_t PUF_GetHwKey( PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize, puf_key_slot_t keySlot, uint32_t keyMask) { status_t status = kStatus_Fail; uint32_t keyIndex; /* check if GET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0x3u & (uintptr_t)keyCode) { return kStatus_Fail; } /* check that keyCodeSize is at least PUF_MIN_KEY_CODE_SIZE */ if (keyCodeSize < PUF_MIN_KEY_CODE_SIZE) { return kStatus_InvalidArgument; } keyIndex = 0x0Fu & keyCode[1]; /* check the Key Code header byte 1. index must be zero for the hw key. */ if (kPUF_KeyIndex_00 != (puf_key_index_register_t)keyIndex) { return kStatus_Fail; } #if defined(FSL_FEATURE_PUF_HAS_KEYSLOTS) && (FSL_FEATURE_PUF_HAS_KEYSLOTS > 0) //volatile uint32_t *keyMask_reg = NULL; #define PUF_KEYSLOT_EN 2 uint32_t regVal = (PUF_KEYSLOT_EN << (2 * keySlot)); if (keySlot >= FSL_FEATURE_PUF_HAS_KEYSLOTS) { return kStatus_InvalidArgument; } #endif /* FSL_FEATURE_PUF_HAS_KEYSLOTS */ #if defined(FSL_FEATURE_PUF_HAS_KEYSLOTS) && (FSL_FEATURE_PUF_HAS_KEYSLOTS > 0) base->KEYRESET = regVal; base->KEYENABLE = regVal; base->KEYMASK[keySlot] = keyMask; #endif /* FSL_FEATURE_PUF_HAS_KEYSLOTS */ status = puf_getHwKey(base, keyCode, keyCodeSize); #if defined(FSL_FEATURE_PUF_HAS_SHIFT_STATUS) && (FSL_FEATURE_PUF_HAS_SHIFT_STATUS > 0) size_t keyWords = 0; if (status == kStatus_Success) { /* if the corresponding shift count does not match, return fail anyway */ keyWords = ((((size_t)keyCode[3]) * 2) - 1u) << (keySlot << 2); if (keyWords != ((0x0Fu << (keySlot << 2)) & base->SHIFT_STATUS)) { status = kStatus_Fail; } } #endif /* FSL_FEATURE_PUF_HAS_SHIFT_STATUS */ return status; } /*! * brief Checks if Get Key operation is allowed. * * This function returns true if get key operation is allowed. * * param base PUF peripheral base address * return true if get key operation is allowed */ bool PUF_IsGetKeyAllowed(PUF_Type *base) { /* check if GET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK)) { return false; } return true; } /*! * brief Reconstruct key from a key code * * The digital fingerprint generated during the Start operation and the KC * generated during a Set Key operation (Set intrinsic key or Set user key) are used to retrieve a stored key. This * operation needs to be done every time a key is needed. * This function accepts only Key Codes created for PUF index registers kPUF_KeyIndex_01 to kPUF_KeyIndex_15. * * param base PUF peripheral base address * param keyCode Word aligned address of the input key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize). * param[out] key Word aligned address of output key. * param keySize Size of the output key in bytes. * return Status of get key operation. */ status_t PUF_GetKey(PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize, uint8_t *key, size_t keySize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; uint32_t *keyAligned = NULL; uint32_t keyIndex; register uint32_t temp32 = 0; /* check if GET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0x3u & (uintptr_t)keyCode) { return kStatus_Fail; } /* only work with aligned key */ if (0x3u & (uintptr_t)key) { return kStatus_Fail; } /* check that keyCodeSize is correct for given keySize */ if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize)) { return kStatus_InvalidArgument; } keyIndex = 0x0Fu & keyCode[1]; /* check the Key Code header byte 1. index must be non-zero for the register key. */ if (kPUF_KeyIndex_00 == (puf_key_index_register_t)keyIndex) { return kStatus_Fail; } keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; keyAligned = (uint32_t *)(uintptr_t)key; /* begin */ base->CTRL = PUF_CTRL_GETKEY_MASK; /* wait till command is accepted */ while (0 == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy send KC, read key */ while (0 != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0 != (PUF_STAT_CODEINREQ_MASK & base->STAT)) { temp32 = 0; if (keyCodeSize >= sizeof(uint32_t)) { temp32 = *keyCodeAligned; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } base->CODEINPUT = temp32; } if (0 != (PUF_STAT_KEYOUTAVAIL_MASK & base->STAT)) { keyIndex = base->KEYOUTINDEX; temp32 = base->KEYOUTPUT; if (keySize >= sizeof(uint32_t)) { *keyAligned = temp32; keyAligned++; keySize -= sizeof(uint32_t); } } } /* get status */ if ((keyIndex) && (0 != (base->STAT & PUF_STAT_SUCCESS_MASK))) { status = kStatus_Success; } return status; } /*! * brief Zeroize PUF * * This function clears all PUF internal logic and puts the PUF to error state. * * param base PUF peripheral base address * return Status of the zeroize operation. */ status_t PUF_Zeroize(PUF_Type *base) { status_t status = kStatus_Fail; /* zeroize command is always allowed */ base->CTRL = PUF_CTRL_ZEROIZE_MASK; /* check that command is accepted */ if ((0 != (base->STAT & PUF_STAT_ERROR_MASK)) && (0 == base->ALLOW)) { status = kStatus_Success; } return status; }