/* * Copyright (c) 2017 - 2018 , NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef _FSL_CLOCK_H_ #define _FSL_CLOCK_H_ #include "fsl_device_registers.h" #include #include #include /*! @addtogroup clock */ /*! @{ */ /*! @file */ /******************************************************************************* * Definitions *****************************************************************************/ /*! @name Driver version */ /*@{*/ /*! @brief CLOCK driver version 2.0.3. */ #define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 0, 3)) /*@}*/ /*! @brief Configure whether driver controls clock * * When set to 0, peripheral drivers will enable clock in initialize function * and disable clock in de-initialize function. When set to 1, peripheral * driver will not control the clock, application could control the clock out of * the driver. * * @note All drivers share this feature switcher. If it is set to 1, application * should handle clock enable and disable for all drivers. */ #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)) #define FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL 0 #endif /*! * @brief User-defined the size of cache for CLOCK_PllGetConfig() function. * * Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function * would cache the recent calulation and accelerate the execution to get the * right settings. */ #ifndef CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT #define CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT 2U #endif /*! @brief Clock ip name array for ROM. */ #define ROM_CLOCKS \ { \ kCLOCK_Rom \ } /*! @brief Clock ip name array for SRAM. */ #define SRAM_CLOCKS \ { \ kCLOCK_Sram1, kCLOCK_Sram2, kCLOCK_Sram3, kCLOCK_Sram4 \ } /*! @brief Clock ip name array for FLASH. */ #define FLASH_CLOCKS \ { \ kCLOCK_Flash \ } /*! @brief Clock ip name array for FMC. */ #define FMC_CLOCKS \ { \ kCLOCK_Fmc \ } /*! @brief Clock ip name array for INPUTMUX. */ #define INPUTMUX_CLOCKS \ { \ kCLOCK_InputMux0, kCLOCK_InputMux1 \ } /*! @brief Clock ip name array for IOCON. */ #define IOCON_CLOCKS \ { \ kCLOCK_Iocon \ } /*! @brief Clock ip name array for GPIO. */ #define GPIO_CLOCKS \ { \ kCLOCK_Gpio0, kCLOCK_Gpio1, kCLOCK_Gpio2, kCLOCK_Gpio3, kCLOCK_Gpio4, kCLOCK_Gpio5 \ } /*! @brief Clock ip name array for PINT. */ #define PINT_CLOCKS \ { \ kCLOCK_Pint \ } /*! @brief Clock ip name array for GINT. */ #define GINT_CLOCKS \ { \ kCLOCK_Gint, kCLOCK_Gint \ } /*! @brief Clock ip name array for DMA. */ #define DMA_CLOCKS \ { \ kCLOCK_Dma0, kCLOCK_Dma1 \ } /*! @brief Clock ip name array for CRC. */ #define CRC_CLOCKS \ { \ kCLOCK_Crc \ } /*! @brief Clock ip name array for WWDT. */ #define WWDT_CLOCKS \ { \ kCLOCK_Wwdt \ } /*! @brief Clock ip name array for RTC. */ #define RTC_CLOCKS \ { \ kCLOCK_Rtc \ } /*! @brief Clock ip name array for Mailbox. */ #define MAILBOX_CLOCKS \ { \ kCLOCK_Mailbox \ } /*! @brief Clock ip name array for LPADC. */ #define LPADC_CLOCKS \ { \ kCLOCK_Adc0 \ } /*! @brief Clock ip name array for MRT. */ #define MRT_CLOCKS \ { \ kCLOCK_Mrt \ } /*! @brief Clock ip name array for OSTIMER. */ #define OSTIMER_CLOCKS \ { \ kCLOCK_OsTimer0 \ } /*! @brief Clock ip name array for SCT0. */ #define SCT_CLOCKS \ { \ kCLOCK_Sct0 \ } /*! @brief Clock ip name array for SCTIPU. */ #define SCTIPU_CLOCKS \ { \ kCLOCK_Sctipu \ } /*! @brief Clock ip name array for UTICK. */ #define UTICK_CLOCKS \ { \ kCLOCK_Utick0 \ } /*! @brief Clock ip name array for FLEXCOMM. */ #define FLEXCOMM_CLOCKS \ { \ kCLOCK_FlexComm0, kCLOCK_FlexComm1, kCLOCK_FlexComm2, kCLOCK_FlexComm3, kCLOCK_FlexComm4, kCLOCK_FlexComm5, \ kCLOCK_FlexComm6, kCLOCK_FlexComm7, kCLOCK_Hs_Lspi \ } /*! @brief Clock ip name array for LPUART. */ #define LPUART_CLOCKS \ { \ kCLOCK_MinUart0, kCLOCK_MinUart1, kCLOCK_MinUart2, kCLOCK_MinUart3, kCLOCK_MinUart4, kCLOCK_MinUart5, \ kCLOCK_MinUart6, kCLOCK_MinUart7 \ } /*! @brief Clock ip name array for BI2C. */ #define BI2C_CLOCKS \ { \ kCLOCK_BI2c0, kCLOCK_BI2c1, kCLOCK_BI2c2, kCLOCK_BI2c3, kCLOCK_BI2c4, kCLOCK_BI2c5, kCLOCK_BI2c6, kCLOCK_BI2c7 \ } /*! @brief Clock ip name array for LSPI. */ #define LPSPI_CLOCKS \ { \ kCLOCK_LSpi0, kCLOCK_LSpi1, kCLOCK_LSpi2, kCLOCK_LSpi3, kCLOCK_LSpi4, kCLOCK_LSpi5, kCLOCK_LSpi6, kCLOCK_LSpi7 \ } /*! @brief Clock ip name array for FLEXI2S. */ #define FLEXI2S_CLOCKS \ { \ kCLOCK_FlexI2s0, kCLOCK_FlexI2s1, kCLOCK_FlexI2s2, kCLOCK_FlexI2s3, kCLOCK_FlexI2s4, kCLOCK_FlexI2s5, \ kCLOCK_FlexI2s6, kCLOCK_FlexI2s7 \ } /*! @brief Clock ip name array for USBTYPC. */ #define USBTYPC_CLOCKS \ { \ kCLOCK_UsbTypc \ } /*! @brief Clock ip name array for CTIMER. */ #define CTIMER_CLOCKS \ { \ kCLOCK_Timer0, kCLOCK_Timer1, kCLOCK_Timer2, kCLOCK_Timer3, kCLOCK_Timer4 \ } /*! @brief Clock ip name array for PVT */ #define PVT_CLOCKS \ { \ kCLOCK_Pvt \ } /*! @brief Clock ip name array for EZHA */ #define EZHA_CLOCKS \ { \ kCLOCK_Ezha \ } /*! @brief Clock ip name array for EZHB */ #define EZHB_CLOCKS \ { \ kCLOCK_Ezhb \ } /*! @brief Clock ip name array for COMP */ #define COMP_CLOCKS \ { \ kCLOCK_Comp \ } /*! @brief Clock ip name array for SDIO. */ #define SDIO_CLOCKS \ { \ kCLOCK_Sdio \ } /*! @brief Clock ip name array for USB1CLK. */ #define USB1CLK_CLOCKS \ { \ kCLOCK_Usb1Clk \ } /*! @brief Clock ip name array for FREQME. */ #define FREQME_CLOCKS \ { \ kCLOCK_Freqme \ } /*! @brief Clock ip name array for USBRAM. */ #define USBRAM_CLOCKS \ { \ kCLOCK_UsbRam1 \ } /*! @brief Clock ip name array for OTP. */ #define OTP_CLOCKS \ { \ kCLOCK_Otp \ } /*! @brief Clock ip name array for RNG. */ #define RNG_CLOCKS \ { \ kCLOCK_Rng \ } /*! @brief Clock ip name array for USBHMR0. */ #define USBHMR0_CLOCKS \ { \ kCLOCK_Usbhmr0 \ } /*! @brief Clock ip name array for USBHSL0. */ #define USBHSL0_CLOCKS \ { \ kCLOCK_Usbhsl0 \ } /*! @brief Clock ip name array for HashCrypt. */ #define HASHCRYPT_CLOCKS \ { \ kCLOCK_HashCrypt \ } /*! @brief Clock ip name array for PowerQuad. */ #define POWERQUAD_CLOCKS \ { \ kCLOCK_PowerQuad \ } /*! @brief Clock ip name array for PLULUT. */ #define PLULUT_CLOCKS \ { \ kCLOCK_PluLut \ } /*! @brief Clock ip name array for PUF. */ #define PUF_CLOCKS \ { \ kCLOCK_Puf \ } /*! @brief Clock ip name array for CASPER. */ #define CASPER_CLOCKS \ { \ kCLOCK_Casper \ } /*! @brief Clock ip name array for ANALOGCTRL. */ #define ANALOGCTRL_CLOCKS \ { \ kCLOCK_AnalogCtrl \ } /*! @brief Clock ip name array for HS_LSPI. */ #define HS_LSPI_CLOCKS \ { \ kCLOCK_Hs_Lspi \ } /*! @brief Clock ip name array for GPIO_SEC. */ #define GPIO_SEC_CLOCKS \ { \ kCLOCK_Gpio_Sec \ } /*! @brief Clock ip name array for GPIO_SEC_INT. */ #define GPIO_SEC_INT_CLOCKS \ { \ kCLOCK_Gpio_Sec_Int \ } /*! @brief Clock ip name array for USBD. */ #define USBD_CLOCKS \ { \ kCLOCK_Usbd0, kCLOCK_Usbh1, kCLOCK_Usbd1 \ } /*! @brief Clock ip name array for USBH. */ #define USBH_CLOCKS \ { \ kCLOCK_Usbh1 \ } #define PLU_CLOCKS \ { \ kCLOCK_PluLut \ } #define SYSCTL_CLOCKS \ { \ kCLOCK_Sysctl \ } /*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */ /*------------------------------------------------------------------------------ clock_ip_name_t definition: ------------------------------------------------------------------------------*/ #define CLK_GATE_REG_OFFSET_SHIFT 8U #define CLK_GATE_REG_OFFSET_MASK 0xFFFFFF00U #define CLK_GATE_BIT_SHIFT_SHIFT 0U #define CLK_GATE_BIT_SHIFT_MASK 0x000000FFU #define CLK_GATE_DEFINE(reg_offset, bit_shift) \ ((((reg_offset) << CLK_GATE_REG_OFFSET_SHIFT) & CLK_GATE_REG_OFFSET_MASK) | \ (((bit_shift) << CLK_GATE_BIT_SHIFT_SHIFT) & CLK_GATE_BIT_SHIFT_MASK)) #define CLK_GATE_ABSTRACT_REG_OFFSET(x) (((uint32_t)(x)&CLK_GATE_REG_OFFSET_MASK) >> CLK_GATE_REG_OFFSET_SHIFT) #define CLK_GATE_ABSTRACT_BITS_SHIFT(x) (((uint32_t)(x)&CLK_GATE_BIT_SHIFT_MASK) >> CLK_GATE_BIT_SHIFT_SHIFT) #define AHB_CLK_CTRL0 0 #define AHB_CLK_CTRL1 1 #define AHB_CLK_CTRL2 2 /*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */ typedef enum _clock_ip_name { kCLOCK_IpInvalid = 0U, kCLOCK_Rom = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 1), kCLOCK_Sram1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 3), kCLOCK_Sram2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 4), kCLOCK_Sram3 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 5), kCLOCK_Sram4 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 6), kCLOCK_Flash = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 7), kCLOCK_Fmc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 8), kCLOCK_InputMux = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 11), kCLOCK_Iocon = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 13), kCLOCK_Gpio0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 14), kCLOCK_Gpio1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 15), kCLOCK_Gpio2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 16), kCLOCK_Gpio3 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 17), kCLOCK_Pint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 18), kCLOCK_Gint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 19), kCLOCK_Dma0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 20), kCLOCK_Crc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 21), kCLOCK_Wwdt = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 22), kCLOCK_Rtc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 23), kCLOCK_Mailbox = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 26), kCLOCK_Adc0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 27), kCLOCK_Mrt = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 0), kCLOCK_OsTimer0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 1), kCLOCK_Sct0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 2), kCLOCK_Sctipu = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 6), kCLOCK_Utick0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 10), kCLOCK_FlexComm0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), kCLOCK_FlexComm1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), kCLOCK_FlexComm2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), kCLOCK_FlexComm3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), kCLOCK_FlexComm4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), kCLOCK_FlexComm5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), kCLOCK_FlexComm6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), kCLOCK_FlexComm7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), kCLOCK_MinUart0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), kCLOCK_MinUart1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), kCLOCK_MinUart2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), kCLOCK_MinUart3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), kCLOCK_MinUart4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), kCLOCK_MinUart5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), kCLOCK_MinUart6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), kCLOCK_MinUart7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), kCLOCK_LSpi0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), kCLOCK_LSpi1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), kCLOCK_LSpi2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), kCLOCK_LSpi3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), kCLOCK_LSpi4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), kCLOCK_LSpi5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), kCLOCK_LSpi6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), kCLOCK_LSpi7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), kCLOCK_BI2c0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), kCLOCK_BI2c1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), kCLOCK_BI2c2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), kCLOCK_BI2c3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), kCLOCK_BI2c4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), kCLOCK_BI2c5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), kCLOCK_BI2c6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), kCLOCK_BI2c7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), kCLOCK_FlexI2s0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11), kCLOCK_FlexI2s1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12), kCLOCK_FlexI2s2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13), kCLOCK_FlexI2s3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14), kCLOCK_FlexI2s4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15), kCLOCK_FlexI2s5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16), kCLOCK_FlexI2s6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17), kCLOCK_FlexI2s7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18), kCLOCK_UsbTypc = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 20), kCLOCK_Timer2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 22), kCLOCK_Usbd0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 25), kCLOCK_Timer0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 26), kCLOCK_Timer1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 27), kCLOCK_Pvt = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 28), kCLOCK_Ezha = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 30), kCLOCK_Ezhb = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 31), kCLOCK_Dma1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 1), kCLOCK_Comp = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 2), kCLOCK_Sdio = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 3), kCLOCK_Usbh1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 4), kCLOCK_Usbd1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 5), kCLOCK_UsbRam1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 6), kCLOCK_Usb1Clk = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 7), kCLOCK_Freqme = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 8), kCLOCK_Gpio4 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 9), kCLOCK_Gpio5 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 10), kCLOCK_Otp = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 12), kCLOCK_Rng = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 13), kCLOCK_InputMux1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 14), kCLOCK_Sysctl = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15), kCLOCK_Usbhmr0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 16), kCLOCK_Usbhsl0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 17), kCLOCK_HashCrypt = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 18), kCLOCK_PowerQuad = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 19), kCLOCK_PluLut = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 20), kCLOCK_Timer3 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 21), kCLOCK_Timer4 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 22), kCLOCK_Puf = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 23), kCLOCK_Casper = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 24), kCLOCK_AnalogCtrl = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 27), kCLOCK_Hs_Lspi = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 28), kCLOCK_Gpio_Sec = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 29), kCLOCK_Gpio_sec_Int = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 30) } clock_ip_name_t; /*! @brief Peripherals clock source definition. */ #define BUS_CLK kCLOCK_BusClk #define I2C0_CLK_SRC BUS_CLK /*! @brief Clock name used to get clock frequency. */ typedef enum _clock_name { kCLOCK_CoreSysClk, /*!< Core/system clock (aka MAIN_CLK) */ kCLOCK_BusClk, /*!< Bus clock (AHB clock) */ kCLOCK_ClockOut, /*!< CLOCKOUT */ kCLOCK_FroHf, /*!< FRO48/96 */ kCLOCK_Adc, /*!< ADC */ kCLOCK_Usb0, /*!< USB0 */ kCLOCK_Usb1, /*!< USB1 */ kCLOCK_Pll1Out, /*!< PLL1 Output */ kCLOCK_Mclk, /*!< MCLK */ kCLOCK_Sct, /*!< SCT */ kCLOCK_SDio, /*!< SDIO */ kCLOCK_Fro12M, /*!< FRO12M */ kCLOCK_ExtClk, /*!< External Clock */ kCLOCK_Pll0Out, /*!< PLL0 Output */ kCLOCK_WdtClk, /*!< Watchdog clock */ kCLOCK_FlexI2S, /*!< FlexI2S clock */ kCLOCK_Flexcomm0, /*!< Flexcomm0Clock */ kCLOCK_Flexcomm1, /*!< Flexcomm1Clock */ kCLOCK_Flexcomm2, /*!< Flexcomm2Clock */ kCLOCK_Flexcomm3, /*!< Flexcomm3Clock */ kCLOCK_Flexcomm4, /*!< Flexcomm4Clock */ kCLOCK_Flexcomm5, /*!< Flexcomm5Clock */ kCLOCK_Flexcomm6, /*!< Flexcomm6Clock */ kCLOCK_Flexcomm7, /*!< Flexcomm7Clock */ kCLOCK_HsLspi, /*!< HS LPSPI Clock */ kCLOCK_CTmier0, /*!< CTmier0Clock */ kCLOCK_CTmier1, /*!< CTmier1Clock */ kCLOCK_CTmier2, /*!< CTmier2Clock */ kCLOCK_CTmier3, /*!< CTmier3Clock */ kCLOCK_CTmier4, /*!< CTmier4Clock */ kCLOCK_Systick0, /*!< System Tick 0 Clock */ kCLOCK_Systick1, /*!< System Tick 1 Clock */ } clock_name_t; /*! @brief Clock Mux Switches * The encoding is as follows each connection identified is 32bits wide while 24bits are valuable * starting from LSB upwards * * [4 bits for choice, 0 means invalid choice] [8 bits mux ID]* * */ #define CLK_ATTACH_ID(mux, sel, pos) (((mux << 0U) | ((sel + 1) & 0xFU) << 8U) << (pos * 12U)) #define MUX_A(mux, sel) CLK_ATTACH_ID(mux, sel, 0U) #define MUX_B(mux, sel, selector) (CLK_ATTACH_ID(mux, sel, 1U) | (selector << 24U)) #define GET_ID_ITEM(connection) ((connection)&0xFFFU) #define GET_ID_NEXT_ITEM(connection) ((connection) >> 12U) #define GET_ID_ITEM_MUX(connection) ((connection)&0xFFU) #define GET_ID_ITEM_SEL(connection) ((((connection)&0xF00U) >> 8U) - 1U) #define GET_ID_SELECTOR(connection) ((connection)&0xF000000U) #define CM_SYSTICKCLKSEL0 0 #define CM_SYSTICKCLKSEL1 1 #define CM_TRACECLKSEL 2 #define CM_CTIMERCLKSEL0 3 #define CM_CTIMERCLKSEL1 4 #define CM_CTIMERCLKSEL2 5 #define CM_CTIMERCLKSEL3 6 #define CM_CTIMERCLKSEL4 7 #define CM_MAINCLKSELA 8 #define CM_MAINCLKSELB 9 #define CM_CLKOUTCLKSEL 10 #define CM_PLL0CLKSEL 12 #define CM_PLL1CLKSEL 13 #define CM_ADCASYNCCLKSEL 17 #define CM_USB0CLKSEL 18 #define CM_FXCOMCLKSEL0 20 #define CM_FXCOMCLKSEL1 21 #define CM_FXCOMCLKSEL2 22 #define CM_FXCOMCLKSEL3 23 #define CM_FXCOMCLKSEL4 24 #define CM_FXCOMCLKSEL5 25 #define CM_FXCOMCLKSEL6 26 #define CM_FXCOMCLKSEL7 27 #define CM_HSLSPICLKSEL 28 #define CM_MCLKCLKSEL 32 #define CM_SCTCLKSEL 36 #define CM_SDIOCLKSEL 38 #define CM_RTCOSC32KCLKSEL 63 typedef enum _clock_attach_id { kFRO12M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 0, 0), kEXT_CLK_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 1) | MUX_B(CM_MAINCLKSELB, 0, 0), kFRO1M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 2) | MUX_B(CM_MAINCLKSELB, 0, 0), kFRO_HF_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 3) | MUX_B(CM_MAINCLKSELB, 0, 0), kPLL0_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 1, 0), kPLL1_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 2, 0), kOSC32K_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 3, 0), kMAIN_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 0), kPLL0_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 1), kEXT_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 2), kFRO_HF_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 3), kFRO1M_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 4), kPLL1_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 5), kOSC32K_to_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 6), kNONE_to_SYS_CLKOUT = MUX_A(CM_CLKOUTCLKSEL, 7), kFRO12M_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 0), kEXT_CLK_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 1), kFRO1M_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 2), kOSC32K_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 3), kNONE_to_PLL0 = MUX_A(CM_PLL0CLKSEL, 7), kMAIN_CLK_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 0), kPLL0_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 1), kFRO_HF_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 2), kFRO1M_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 3), /* Need confirm */ kNONE_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 7), kMAIN_CLK_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 0), kPLL0_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 1), kFRO_HF_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 3), kPLL1_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 5), kNONE_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 7), kMAIN_CLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 0), kPLL0_DIV_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 1), kFRO12M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 2), kFRO_HF_DIV_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 3), kFRO1M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 4), kMCLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 5), kOSC32K_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 6), kNONE_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 7), kMAIN_CLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 0), kPLL0_DIV_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 1), kFRO12M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 2), kFRO_HF_DIV_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 3), kFRO1M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 4), kMCLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 5), kOSC32K_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 6), kNONE_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 7), kMAIN_CLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 0), kPLL0_DIV_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 1), kFRO12M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 2), kFRO_HF_DIV_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 3), kFRO1M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 4), kMCLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 5), kOSC32K_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 6), kNONE_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 7), kMAIN_CLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 0), kPLL0_DIV_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 1), kFRO12M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 2), kFRO_HF_DIV_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 3), kFRO1M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 4), kMCLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 5), kOSC32K_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 6), kNONE_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 7), kMAIN_CLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 0), kPLL0_DIV_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 1), kFRO12M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 2), kFRO_HF_DIV_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 3), kFRO1M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 4), kMCLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 5), kOSC32K_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 6), kNONE_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 7), kMAIN_CLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 0), kPLL0_DIV_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 1), kFRO12M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 2), kFRO_HF_DIV_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 3), kFRO1M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 4), kMCLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 5), kOSC32K_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 6), kNONE_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 7), kMAIN_CLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 0), kPLL0_DIV_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 1), kFRO12M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 2), kFRO_HF_DIV_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 3), kFRO1M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 4), kMCLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 5), kOSC32K_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 6), kNONE_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 7), kMAIN_CLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 0), kPLL0_DIV_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 1), kFRO12M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 2), kFRO_HF_DIV_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 3), kFRO1M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 4), kMCLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 5), kOSC32K_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 6), kNONE_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 7), kMAIN_CLK_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 0), kPLL0_DIV_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 1), kFRO12M_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 2), kFRO_HF_DIV_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 3), kFRO1M_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 4), kOSC32K_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 6), kNONE_to_HSLSPI = MUX_A(CM_HSLSPICLKSEL, 7), kFRO_HF_to_MCLK = MUX_A(CM_MCLKCLKSEL, 0), kPLL0_to_MCLK = MUX_A(CM_MCLKCLKSEL, 1), kFRO1M_to_MCLK = MUX_A(CM_MCLKCLKSEL, 2), /* Need confirm */ kMAIN_CLK_to_MCLK = MUX_A(CM_MCLKCLKSEL, 3), /* Need confirm */ kNONE_to_MCLK = MUX_A(CM_MCLKCLKSEL, 7), kMAIN_CLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 0), kPLL0_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 1), kEXT_CLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 2), kFRO_HF_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 3), kMCLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 5), kNONE_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 7), kMAIN_CLK_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 0), kPLL0_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 1), kFRO_HF_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 3), kPLL1_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 5), kNONE_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 7), kFRO32K_to_OSC32K = MUX_A(CM_RTCOSC32KCLKSEL, 0), kXTAL32K_to_OSC32K = MUX_A(CM_RTCOSC32KCLKSEL, 1), kTRACE_DIV_to_TRACE = MUX_A(CM_TRACECLKSEL, 0), kFRO1M_to_TRACE = MUX_A(CM_TRACECLKSEL, 1), kOSC32K_to_TRACE = MUX_A(CM_TRACECLKSEL, 2), kNONE_to_TRACE = MUX_A(CM_TRACECLKSEL, 7), kSYSTICK_DIV0_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 0), kFRO1M_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 1), kOSC32K_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 2), kNONE_to_SYSTICK0 = MUX_A(CM_SYSTICKCLKSEL0, 7), kSYSTICK_DIV1_to_SYSTICK1 = MUX_A(CM_SYSTICKCLKSEL1, 0), kFRO1M_to_SYSTICK1 = MUX_A(CM_SYSTICKCLKSEL1, 1), kOSC32K_to_SYSTICK1 = MUX_A(CM_SYSTICKCLKSEL1, 2), kNONE_to_SYSTICK1 = MUX_A(CM_SYSTICKCLKSEL1, 7), kFRO12M_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 0), kEXT_CLK_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 1), kFRO1M_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 2), kOSC32K_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 3), kNONE_to_PLL1 = MUX_A(CM_PLL1CLKSEL, 7), kMAIN_CLK_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 0), kPLL0_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 1), kFRO_HF_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 3), kFRO1M_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 4), kMCLK_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 5), kOSC32K_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 6), kNONE_to_CTIMER0 = MUX_A(CM_CTIMERCLKSEL0, 7), kMAIN_CLK_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 0), kPLL0_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 1), kFRO_HF_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 3), kFRO1M_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 4), kMCLK_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 5), kOSC32K_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 6), kNONE_to_CTIMER1 = MUX_A(CM_CTIMERCLKSEL1, 7), kMAIN_CLK_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 0), kPLL0_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 1), kFRO_HF_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 3), kFRO1M_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 4), kMCLK_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 5), kOSC32K_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 6), kNONE_to_CTIMER2 = MUX_A(CM_CTIMERCLKSEL2, 7), kMAIN_CLK_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 0), kPLL0_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 1), kFRO_HF_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 3), kFRO1M_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 4), kMCLK_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 5), kOSC32K_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 6), kNONE_to_CTIMER3 = MUX_A(CM_CTIMERCLKSEL3, 7), kMAIN_CLK_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 0), kPLL0_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 1), kFRO_HF_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 3), kFRO1M_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 4), kMCLK_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 5), kOSC32K_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 6), kNONE_to_CTIMER4 = MUX_A(CM_CTIMERCLKSEL4, 7), kNONE_to_NONE = (int)0x80000000U, } clock_attach_id_t; /* Clock dividers */ typedef enum _clock_div_name { kCLOCK_DivSystickClk0 = 0, kCLOCK_DivSystickClk1 = 1, kCLOCK_DivArmTrClkDiv = 2, kCLOCK_DivFlexFrg0 = 8, kCLOCK_DivFlexFrg1 = 9, kCLOCK_DivFlexFrg2 = 10, kCLOCK_DivFlexFrg3 = 11, kCLOCK_DivFlexFrg4 = 12, kCLOCK_DivFlexFrg5 = 13, kCLOCK_DivFlexFrg6 = 14, kCLOCK_DivFlexFrg7 = 15, kCLOCK_DivAhbClk = 32, kCLOCK_DivClkOut = 33, kCLOCK_DivFrohfClk = 34, kCLOCK_DivWdtClk = 35, kCLOCK_DivAdcAsyncClk = 37, kCLOCK_DivUsb0Clk = 38, kCLOCK_DivMClk = 43, kCLOCK_DivSctClk = 45, kCLOCK_DivSdioClk = 47, kCLOCK_DivPll0Clk = 49 } clock_div_name_t; /******************************************************************************* * API ******************************************************************************/ #if defined(__cplusplus) extern "C" { #endif /* __cplusplus */ /** * @brief Enable the clock for specific IP. * @param name : Clock to be enabled. * @return Nothing */ static inline void CLOCK_EnableClock(clock_ip_name_t clk) { uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk); SYSCON->AHBCLKCTRLSET[index] = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk)); } /** * @brief Disable the clock for specific IP. * @param name : Clock to be Disabled. * @return Nothing */ static inline void CLOCK_DisableClock(clock_ip_name_t clk) { uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk); SYSCON->AHBCLKCTRLCLR[index] = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk)); } /** * @brief Initialize the Core clock to given frequency (12, 48 or 96 MHz). * Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is * enabled. * @param iFreq : Desired frequency (must be one of #CLK_FRO_12MHZ or #CLK_FRO_48MHZ or #CLK_FRO_96MHZ) * @return returns success or fail status. */ status_t CLOCK_SetupFROClocking(uint32_t iFreq); /** * @brief Set the flash wait states for the input freuqency. * @param iFreq : Input frequency * @return Nothing */ void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t iFreq); /** * @brief Initialize the external osc clock to given frequency. * @param iFreq : Desired frequency (must be equal to exact rate in Hz) * @return returns success or fail status. */ status_t CLOCK_SetupExtClocking(uint32_t iFreq); /** * @brief Initialize the I2S MCLK clock to given frequency. * @param iFreq : Desired frequency (must be equal to exact rate in Hz) * @return returns success or fail status. */ status_t CLOCK_SetupI2SMClkClocking(uint32_t iFreq); /** * @brief Configure the clock selection muxes. * @param connection : Clock to be configured. * @return Nothing */ void CLOCK_AttachClk(clock_attach_id_t connection); /** * @brief Get the actual clock attach id. * This fuction uses the offset in input attach id, then it reads the actual source value in * the register and combine the offset to obtain an actual attach id. * @param attachId : Clock attach id to get. * @return Clock source value. */ clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId); /** * @brief Setup peripheral clock dividers. * @param div_name : Clock divider name * @param divided_by_value: Value to be divided * @param reset : Whether to reset the divider counter. * @return Nothing */ void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset); /** * @brief Setup rtc 1khz clock divider. * @param divided_by_value: Value to be divided * @return Nothing */ void CLOCK_SetRtc1khzClkDiv(uint32_t divided_by_value); /** * @brief Setup rtc 1hz clock divider. * @param divided_by_value: Value to be divided * @return Nothing */ void CLOCK_SetRtc1hzClkDiv(uint32_t divided_by_value); /** * @brief Set the flexcomm output frequency. * @param id : flexcomm instance id * freq : output frequency * @return 0 : the frequency range is out of range. * 1 : switch successfully. */ uint32_t CLOCK_SetFlexCommClock(uint32_t id, uint32_t freq); /*! @brief Return Frequency of flexcomm input clock * @param id : flexcomm instance id * @return Frequency value */ uint32_t CLOCK_GetFlexCommInputClock(uint32_t id); /*! @brief Return Frequency of selected clock * @return Frequency of selected clock */ uint32_t CLOCK_GetFreq(clock_name_t clockName); /*! @brief Return Frequency of FRO 12MHz * @return Frequency of FRO 12MHz */ uint32_t CLOCK_GetFro12MFreq(void); /*! @brief Return Frequency of FRO 1MHz * @return Frequency of FRO 1MHz */ uint32_t CLOCK_GetFro1MFreq(void); /*! @brief Return Frequency of ClockOut * @return Frequency of ClockOut */ uint32_t CLOCK_GetClockOutClkFreq(void); /*! @brief Return Frequency of Adc Clock * @return Frequency of Adc. */ uint32_t CLOCK_GetAdcClkFreq(void); /*! @brief Return Frequency of Usb0 Clock * @return Frequency of Usb0 Clock. */ uint32_t CLOCK_GetUsb0ClkFreq(void); /*! @brief Return Frequency of Usb1 Clock * @return Frequency of Usb1 Clock. */ uint32_t CLOCK_GetUsb1ClkFreq(void); /*! @brief Return Frequency of MClk Clock * @return Frequency of MClk Clock. */ uint32_t CLOCK_GetMclkClkFreq(void); /*! @brief Return Frequency of SCTimer Clock * @return Frequency of SCTimer Clock. */ uint32_t CLOCK_GetSctClkFreq(void); /*! @brief Return Frequency of SDIO Clock * @return Frequency of SDIO Clock. */ uint32_t CLOCK_GetSdioClkFreq(void); /*! @brief Return Frequency of External Clock * @return Frequency of External Clock. If no external clock is used returns 0. */ uint32_t CLOCK_GetExtClkFreq(void); /*! @brief Return Frequency of Watchdog * @return Frequency of Watchdog */ uint32_t CLOCK_GetWdtClkFreq(void); /*! @brief Return Frequency of High-Freq output of FRO * @return Frequency of High-Freq output of FRO */ uint32_t CLOCK_GetFroHfFreq(void); /*! @brief Return Frequency of PLL * @return Frequency of PLL */ uint32_t CLOCK_GetPll0OutFreq(void); /*! @brief Return Frequency of USB PLL * @return Frequency of PLL */ uint32_t CLOCK_GetPll1OutFreq(void); /*! @brief Return Frequency of 32kHz osc * @return Frequency of 32kHz osc */ uint32_t CLOCK_GetOsc32KFreq(void); /*! @brief Return Frequency of Core System * @return Frequency of Core System */ uint32_t CLOCK_GetCoreSysClkFreq(void); /*! @brief Return Frequency of I2S MCLK Clock * @return Frequency of I2S MCLK Clock */ uint32_t CLOCK_GetI2SMClkFreq(void); /*! @brief Return Frequency of CTimer functional Clock * @return Frequency of CTimer functional Clock */ uint32_t CLOCK_GetCTimerClkFreq(uint32_t id); /*! @brief Return Frequency of SystickClock * @return Frequency of Systick Clock */ uint32_t CLOCK_GetSystickClkFreq(uint32_t id); /*! @brief Return PLL0 input clock rate * @return PLL0 input clock rate */ uint32_t CLOCK_GetPLL0InClockRate(void); /*! @brief Return PLL1 input clock rate * @return PLL1 input clock rate */ uint32_t CLOCK_GetPLL1InClockRate(void); /*! @brief Return PLL0 output clock rate * @param recompute : Forces a PLL rate recomputation if true * @return PLL0 output clock rate * @note The PLL rate is cached in the driver in a variable as * the rate computation function can take some time to perform. It * is recommended to use 'false' with the 'recompute' parameter. */ uint32_t CLOCK_GetPLL0OutClockRate(bool recompute); /*! @brief Return PLL1 output clock rate * @param recompute : Forces a PLL rate recomputation if true * @return PLL1 output clock rate * @note The PLL rate is cached in the driver in a variable as * the rate computation function can take some time to perform. It * is recommended to use 'false' with the 'recompute' parameter. */ uint32_t CLOCK_GetPLL1OutClockRate(bool recompute); /*! @brief Enables and disables PLL0 bypass mode * @brief bypass : true to bypass PLL0 (PLL0 output = PLL0 input, false to disable bypass * @return PLL0 output clock rate */ __STATIC_INLINE void CLOCK_SetBypassPLL0(bool bypass) { if (bypass) { SYSCON->PLL0CTRL |= (1UL << SYSCON_PLL0CTRL_BYPASSPLL_SHIFT); } else { SYSCON->PLL0CTRL &= ~(1UL << SYSCON_PLL0CTRL_BYPASSPLL_SHIFT); } } /*! @brief Enables and disables PLL1 bypass mode * @brief bypass : true to bypass PLL1 (PLL1 output = PLL1 input, false to disable bypass * @return PLL1 output clock rate */ __STATIC_INLINE void CLOCK_SetBypassPLL1(bool bypass) { if (bypass) { SYSCON->PLL1CTRL |= (1UL << SYSCON_PLL1CTRL_BYPASSPLL_SHIFT); } else { SYSCON->PLL1CTRL &= ~(1UL << SYSCON_PLL1CTRL_BYPASSPLL_SHIFT); } } /*! @brief Check if PLL is locked or not * @return true if the PLL is locked, false if not locked */ __STATIC_INLINE bool CLOCK_IsPLL0Locked(void) { return (bool)((SYSCON->PLL0STAT & SYSCON_PLL0STAT_LOCK_MASK) != 0); } /*! @brief Check if PLL1 is locked or not * @return true if the PLL1 is locked, false if not locked */ __STATIC_INLINE bool CLOCK_IsPLL1Locked(void) { return (bool)((SYSCON->PLL1STAT & SYSCON_PLL1STAT_LOCK_MASK) != 0); } /*! @brief Store the current PLL rate * @param rate: Current rate of the PLL * @return Nothing **/ void CLOCK_SetStoredPLLClockRate(uint32_t rate); /*! @brief PLL configuration structure flags for 'flags' field * These flags control how the PLL configuration function sets up the PLL setup structure.
* * When the PLL_CONFIGFLAG_USEINRATE flag is selected, the 'InputRate' field in the * configuration structure must be assigned with the expected PLL frequency. If the * PLL_CONFIGFLAG_USEINRATE is not used, 'InputRate' is ignored in the configuration * function and the driver will determine the PLL rate from the currently selected * PLL source. This flag might be used to configure the PLL input clock more accurately * when using the WDT oscillator or a more dyanmic CLKIN source.
* * When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the * automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider * are not used.
*/ #define PLL_CONFIGFLAG_USEINRATE (1 << 0) /*!< Flag to use InputRate in PLL configuration structure for setup */ #define PLL_CONFIGFLAG_FORCENOFRACT (1 << 2) /*!< Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or SS hardware */ /*! @brief PLL Spread Spectrum (SS) Programmable modulation frequency * See (MF) field in the PLL0SSCG1 register in the UM. */ typedef enum _ss_progmodfm { kSS_MF_512 = (0 << 20), /*!< Nss = 512 (fm ? 3.9 - 7.8 kHz) */ kSS_MF_384 = (1 << 20), /*!< Nss ?= 384 (fm ? 5.2 - 10.4 kHz) */ kSS_MF_256 = (2 << 20), /*!< Nss = 256 (fm ? 7.8 - 15.6 kHz) */ kSS_MF_128 = (3 << 20), /*!< Nss = 128 (fm ? 15.6 - 31.3 kHz) */ kSS_MF_64 = (4 << 20), /*!< Nss = 64 (fm ? 32.3 - 64.5 kHz) */ kSS_MF_32 = (5 << 20), /*!< Nss = 32 (fm ? 62.5- 125 kHz) */ kSS_MF_24 = (6 << 20), /*!< Nss ?= 24 (fm ? 83.3- 166.6 kHz) */ kSS_MF_16 = (7 << 20) /*!< Nss = 16 (fm ? 125- 250 kHz) */ } ss_progmodfm_t; /*! @brief PLL Spread Spectrum (SS) Programmable frequency modulation depth * See (MR) field in the PLL0SSCG1 register in the UM. */ typedef enum _ss_progmoddp { kSS_MR_K0 = (0 << 23), /*!< k = 0 (no spread spectrum) */ kSS_MR_K1 = (1 << 23), /*!< k = 1 */ kSS_MR_K1_5 = (2 << 23), /*!< k = 1.5 */ kSS_MR_K2 = (3 << 23), /*!< k = 2 */ kSS_MR_K3 = (4 << 23), /*!< k = 3 */ kSS_MR_K4 = (5 << 23), /*!< k = 4 */ kSS_MR_K6 = (6 << 23), /*!< k = 6 */ kSS_MR_K8 = (7 << 23) /*!< k = 8 */ } ss_progmoddp_t; /*! @brief PLL Spread Spectrum (SS) Modulation waveform control * See (MC) field in the PLL0SSCG1 register in the UM.
* Compensation for low pass filtering of the PLL to get a triangular * modulation at the output of the PLL, giving a flat frequency spectrum. */ typedef enum _ss_modwvctrl { kSS_MC_NOC = (0 << 26), /*!< no compensation */ kSS_MC_RECC = (2 << 26), /*!< recommended setting */ kSS_MC_MAXC = (3 << 26), /*!< max. compensation */ } ss_modwvctrl_t; /*! @brief PLL configuration structure * * This structure can be used to configure the settings for a PLL * setup structure. Fill in the desired configuration for the PLL * and call the PLL setup function to fill in a PLL setup structure. */ typedef struct _pll_config { uint32_t desiredRate; /*!< Desired PLL rate in Hz */ uint32_t inputRate; /*!< PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set */ uint32_t flags; /*!< PLL configuration flags, Or'ed value of PLL_CONFIGFLAG_* definitions */ ss_progmodfm_t ss_mf; /*!< SS Programmable modulation frequency, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */ ss_progmoddp_t ss_mr; /*!< SS Programmable frequency modulation depth, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */ ss_modwvctrl_t ss_mc; /*!< SS Modulation waveform control, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */ bool mfDither; /*!< false for fixed modulation frequency or true for dithering, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */ } pll_config_t; /*! @brief PLL setup structure flags for 'flags' field * These flags control how the PLL setup function sets up the PLL */ #define PLL_SETUPFLAG_POWERUP (1 << 0) /*!< Setup will power on the PLL after setup */ #define PLL_SETUPFLAG_WAITLOCK (1 << 1) /*!< Setup will wait for PLL lock, implies the PLL will be pwoered on */ #define PLL_SETUPFLAG_ADGVOLT (1 << 2) /*!< Optimize system voltage for the new PLL rate */ #define PLL_SETUPFLAG_USEFEEDBACKDIV2 (1 << 3) /*!< Use feedback divider by 2 in divider path */ /*! @brief PLL0 setup structure * This structure can be used to pre-build a PLL setup configuration * at run-time and quickly set the PLL to the configuration. It can be * populated with the PLL setup function. If powering up or waiting * for PLL lock, the PLL input clock source should be configured prior * to PLL setup. */ typedef struct _pll_setup { uint32_t pllctrl; /*!< PLL control register PLL0CTRL */ uint32_t pllndec; /*!< PLL NDEC register PLL0NDEC */ uint32_t pllpdec; /*!< PLL PDEC register PLL0PDEC */ uint32_t pllmdec; /*!< PLL MDEC registers PLL0PDEC */ uint32_t pllsscg[2]; /*!< PLL SSCTL registers PLL0SSCG*/ uint32_t pllRate; /*!< Acutal PLL rate */ uint32_t flags; /*!< PLL setup flags, Or'ed value of PLL_SETUPFLAG_* definitions */ } pll_setup_t; /*! @brief PLL status definitions */ typedef enum _pll_error { kStatus_PLL_Success = MAKE_STATUS(kStatusGroup_Generic, 0), /*!< PLL operation was successful */ kStatus_PLL_OutputTooLow = MAKE_STATUS(kStatusGroup_Generic, 1), /*!< PLL output rate request was too low */ kStatus_PLL_OutputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 2), /*!< PLL output rate request was too high */ kStatus_PLL_InputTooLow = MAKE_STATUS(kStatusGroup_Generic, 3), /*!< PLL input rate is too low */ kStatus_PLL_InputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 4), /*!< PLL input rate is too high */ kStatus_PLL_OutsideIntLimit = MAKE_STATUS(kStatusGroup_Generic, 5), /*!< Requested output rate isn't possible */ kStatus_PLL_CCOTooLow = MAKE_STATUS(kStatusGroup_Generic, 6), /*!< Requested CCO rate isn't possible */ kStatus_PLL_CCOTooHigh = MAKE_STATUS(kStatusGroup_Generic, 7) /*!< Requested CCO rate isn't possible */ } pll_error_t; /*! @brief USB FS clock source definition. */ typedef enum _clock_usbfs_src { kCLOCK_UsbfsSrcFro = (uint32_t)kCLOCK_FroHf, /*!< Use FRO 96 MHz. */ kCLOCK_UsbfsSrcPll0 = (uint32_t)kCLOCK_Pll0Out, /*!< Use PLL0 output. */ kCLOCK_UsbfsSrcMainClock = (uint32_t)kCLOCK_CoreSysClk, /*!< Use Main clock. */ kCLOCK_UsbfsSrcPll1 = (uint32_t)kCLOCK_Pll1Out, /*!< Use PLL1 clock. */ kCLOCK_UsbfsSrcNone = SYSCON_USB0CLKSEL_SEL(7) /*!