/* * The Clear BSD License * Copyright 2013-2016 Freescale Semiconductor, Inc. * Copyright 2016-2018 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted (subject to the limitations in the * disclaimer below) provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE * GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT * HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "fsl_ftfx_flash.h" /******************************************************************************* * Definitions ******************************************************************************/ /*! * @brief Enumeration for special memory property. */ enum _ftfx_special_mem_property { kFTFx_AccessSegmentUnitSize = 256UL, kFTFx_MinProtectBlockSize = 1024UL, }; /*! * @brief Enumeration for the index of read/program once record */ enum _k3_flash_read_once_index { kFLASH_RecordIndexSwapAddr = 0xA1U, /*!< Index of Swap indicator address.*/ kFLASH_RecordIndexSwapEnable = 0xA2U, /*!< Index of Swap system enable.*/ kFLASH_RecordIndexSwapDisable = 0xA3U, /*!< Index of Swap system disable.*/ }; /******************************************************************************* * Prototypes ******************************************************************************/ static void flash_init_features(ftfx_config_t *config); static uint32_t flash_calculate_mem_size(uint32_t pflashBlockCount, uint32_t pflashBlockSize, uint32_t pfsizeMask, uint32_t pfsizeShift); static uint32_t flash_calculate_prot_segment_size(uint32_t flashSize, uint32_t segmentCount); static status_t flash_check_range_to_get_index(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint8_t *flashIndex); /*! @brief Convert address for flash.*/ static status_t flash_convert_start_address(ftfx_config_t *config, uint32_t start); #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP /*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/ static status_t flash_validate_swap_indicator_address(ftfx_config_t *config, uint32_t address); #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */ /******************************************************************************* * Variables ******************************************************************************/ static volatile uint32_t *const kFPROTL = (volatile uint32_t *)&FTFx_FPROT_LOW_REG; static volatile uint32_t *const kFPROTH = (volatile uint32_t *)&FTFx_FPROT_HIGH_REG; #if FTFx_DRIVER_HAS_FLASH1_SUPPORT volatile uint8_t *const kFPROTSL = (volatile uint8_t *)&FTFx_FPROTSL_REG; volatile uint8_t *const kFPROTSH = (volatile uint8_t *)&FTFx_FPROTSH_REG; #endif /*! * @brief Table of pflash sizes. * * The index into this table is the value of the SIM_FCFG1.PFSIZE bitfield. * * The values in this table have been right shifted 10 bits so that they will all fit within * an 16-bit integer. To get the actual flash density, you must left shift the looked up value * by 10 bits. * * Elements of this table have a value of 0 in cases where the PFSIZE bitfield value is * reserved. * * Code to use the table: * @code * uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT; * flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10; * @endcode */ #if defined(FSL_FEATURE_FLASH_SIZE_ENCODING_RULE_VERSION) && (FSL_FEATURE_FLASH_SIZE_ENCODING_RULE_VERSION == 1) static const uint16_t kPFlashDensities[] = { 0, /* 0x0 - undefined */ 0, /* 0x1 - undefined */ 0, /* 0x2 - undefined */ 0, /* 0x3 - undefined */ 0, /* 0x4 - undefined */ 0, /* 0x5 - undefined */ 0, /* 0x6 - undefined */ 0, /* 0x7 - undefined */ 0, /* 0x8 - undefined */ 0, /* 0x9 - undefined */ 256, /* 0xa - 262144, 256KB */ 0, /* 0xb - undefined */ 1024, /* 0xc - 1048576, 1MB */ 0, /* 0xd - undefined */ 0, /* 0xe - undefined */ 0, /* 0xf - undefined */ }; #else static const uint16_t kPFlashDensities[] = { 8, /* 0x0 - 8192, 8KB */ 16, /* 0x1 - 16384, 16KB */ 24, /* 0x2 - 24576, 24KB */ 32, /* 0x3 - 32768, 32KB */ 48, /* 0x4 - 49152, 48KB */ 64, /* 0x5 - 65536, 64KB */ 96, /* 0x6 - 98304, 96KB */ 128, /* 0x7 - 131072, 128KB */ 192, /* 0x8 - 196608, 192KB */ 256, /* 0x9 - 262144, 256KB */ 384, /* 0xa - 393216, 384KB */ 512, /* 0xb - 524288, 512KB */ 768, /* 0xc - 786432, 768KB */ 1024, /* 0xd - 1048576, 1MB */ 1536, /* 0xe - 1572864, 1.5MB */ /* 2048, 0xf - 2097152, 2MB */ }; #endif /******************************************************************************* * Code ******************************************************************************/ status_t FLASH_Init(flash_config_t *config) { status_t returnCode; if (config == NULL) { return kStatus_FTFx_InvalidArgument; } for (uint8_t flashIndex = 0; flashIndex < FTFx_FLASH_COUNT; flashIndex++) { uint32_t pflashStartAddress; uint32_t pflashBlockSize; uint32_t pflashBlockCount; uint32_t pflashBlockSectorSize; uint32_t pflashProtectionRegionCount; uint32_t pflashBlockWriteUnitSize; uint32_t pflashSectorCmdAlignment; uint32_t pflashSectionCmdAlignment; uint32_t pfsizeMask; uint32_t pfsizeShift; uint32_t facssValue; uint32_t facsnValue; config->ftfxConfig[flashIndex].flashDesc.type = kFTFx_MemTypePflash; config->ftfxConfig[flashIndex].flashDesc.index = flashIndex; flash_init_features(&config->ftfxConfig[flashIndex]); #if FTFx_DRIVER_HAS_FLASH1_SUPPORT if(flashIndex == 1) { pflashStartAddress = FLASH1_FEATURE_PFLASH_START_ADDRESS; pflashBlockSize = FLASH1_FEATURE_PFLASH_BLOCK_SIZE; pflashBlockCount = FLASH1_FEATURE_PFLASH_BLOCK_COUNT; pflashBlockSectorSize = FLASH1_FEATURE_PFLASH_BLOCK_SECTOR_SIZE; pflashProtectionRegionCount = FLASH1_FEATURE_PFLASH_PROTECTION_REGION_COUNT; pflashBlockWriteUnitSize = FLASH1_FEATURE_PFLASH_BLOCK_WRITE_UNIT_SIZE; pflashSectorCmdAlignment = FLASH1_FEATURE_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT; pflashSectionCmdAlignment = FLASH1_FEATURE_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT; pfsizeMask = SIM_FLASH1_PFSIZE_MASK; pfsizeShift = SIM_FLASH1_PFSIZE_SHIFT; facssValue = FTFx_FACSSS_REG; facsnValue = FTFx_FACSNS_REG; } else #endif { pflashStartAddress = FLASH0_FEATURE_PFLASH_START_ADDRESS; pflashBlockSize = FLASH0_FEATURE_PFLASH_BLOCK_SIZE; pflashBlockCount = FLASH0_FEATURE_PFLASH_BLOCK_COUNT; pflashBlockSectorSize = FLASH0_FEATURE_PFLASH_BLOCK_SECTOR_SIZE; pflashProtectionRegionCount = FLASH0_FEATURE_PFLASH_PROTECTION_REGION_COUNT; pflashBlockWriteUnitSize = FLASH0_FEATURE_PFLASH_BLOCK_WRITE_UNIT_SIZE; pflashSectorCmdAlignment = FLASH0_FEATURE_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT; pflashSectionCmdAlignment = FLASH0_FEATURE_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT; pfsizeMask = SIM_FLASH0_PFSIZE_MASK; pfsizeShift = SIM_FLASH0_PFSIZE_SHIFT; facssValue = FTFx_FACSS_REG; facsnValue = FTFx_FACSN_REG; } config->ftfxConfig[flashIndex].flashDesc.blockBase = pflashStartAddress; config->ftfxConfig[flashIndex].flashDesc.blockCount = pflashBlockCount; config->ftfxConfig[flashIndex].flashDesc.sectorSize = pflashBlockSectorSize; if (config->ftfxConfig[flashIndex].flashDesc.feature.isIndBlock && config->ftfxConfig[flashIndex].flashDesc.feature.hasIndPfsizeReg) { config->ftfxConfig[flashIndex].flashDesc.totalSize = flash_calculate_mem_size(pflashBlockCount, pflashBlockSize, pfsizeMask, pfsizeShift); } else { config->ftfxConfig[flashIndex].flashDesc.totalSize = pflashBlockCount * pflashBlockSize; } if (config->ftfxConfig[flashIndex].flashDesc.feature.hasXaccControl) { ftfx_spec_mem_t *specMem; specMem = &config->ftfxConfig[flashIndex].flashDesc.accessSegmentMem; if (config->ftfxConfig[flashIndex].flashDesc.feature.hasIndXaccReg) { specMem->base = config->ftfxConfig[flashIndex].flashDesc.blockBase; specMem->size = kFTFx_AccessSegmentUnitSize << facssValue; specMem->count = facsnValue; } else { specMem->base = config->ftfxConfig[0].flashDesc.blockBase; specMem->size = kFTFx_AccessSegmentUnitSize << FTFx_FACSS_REG; specMem->count = FTFx_FACSN_REG; } } if (config->ftfxConfig[flashIndex].flashDesc.feature.hasProtControl) { ftfx_spec_mem_t *specMem; specMem = &config->ftfxConfig[flashIndex].flashDesc.protectRegionMem; if (config->ftfxConfig[flashIndex].flashDesc.feature.hasIndProtReg) { specMem->base = config->ftfxConfig[flashIndex].flashDesc.blockBase; specMem->count = pflashProtectionRegionCount; specMem->size = flash_calculate_prot_segment_size(config->ftfxConfig[flashIndex].flashDesc.totalSize, specMem->count); } else { uint32_t pflashTotalSize = 0; specMem->base = config->ftfxConfig[0].flashDesc.blockBase; specMem->count = FLASH0_FEATURE_PFLASH_PROTECTION_REGION_COUNT; #if (FTFx_FLASH_COUNT != 1) if (flashIndex == FTFx_FLASH_COUNT - 1) #endif { uint32_t segmentSize; for (uint32_t i = 0; i < FTFx_FLASH_COUNT; i++) { pflashTotalSize += config->ftfxConfig[flashIndex].flashDesc.totalSize; } segmentSize = flash_calculate_prot_segment_size(pflashTotalSize, specMem->count); for (uint32_t i = 0; i < FTFx_FLASH_COUNT; i++) { config->ftfxConfig[i].flashDesc.protectRegionMem.size = segmentSize; } } } } config->ftfxConfig[flashIndex].opsConfig.addrAligment.blockWriteUnitSize = pflashBlockWriteUnitSize; config->ftfxConfig[flashIndex].opsConfig.addrAligment.sectorCmd = pflashSectorCmdAlignment; config->ftfxConfig[flashIndex].opsConfig.addrAligment.sectionCmd = pflashSectionCmdAlignment; config->ftfxConfig[flashIndex].opsConfig.addrAligment.resourceCmd = FSL_FEATURE_FLASH_PFLASH_RESOURCE_CMD_ADDRESS_ALIGMENT; config->ftfxConfig[flashIndex].opsConfig.addrAligment.checkCmd = FSL_FEATURE_FLASH_PFLASH_CHECK_CMD_ADDRESS_ALIGMENT; config->ftfxConfig[flashIndex].opsConfig.addrAligment.swapCtrlCmd = FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT; /* Init FTFx Kernel */ returnCode = FTFx_API_Init(&config->ftfxConfig[flashIndex]); if (returnCode != kStatus_FTFx_Success) { return returnCode; } } return kStatus_FTFx_Success; } status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key) { status_t returnCode; uint8_t flashIndex; returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } returnCode = flash_convert_start_address(&config->ftfxConfig[flashIndex], start); if (returnCode != kStatus_FTFx_Success) { return returnCode; } return FTFx_CMD_Erase(&config->ftfxConfig[flashIndex], start, lengthInBytes, key); } status_t FLASH_EraseAll(flash_config_t *config, uint32_t key) { return FTFx_CMD_EraseAll(&config->ftfxConfig[0], key); } #if defined(FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD) && FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key) { return FTFx_CMD_EraseAllUnsecure(&config->ftfxConfig[0], key); } #endif status_t FLASH_Program(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes) { status_t returnCode; uint8_t flashIndex; returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } returnCode = flash_convert_start_address(&config->ftfxConfig[flashIndex], start); if (returnCode != kStatus_FTFx_Success) { return returnCode; } return FTFx_CMD_Program(&config->ftfxConfig[flashIndex], start, src, lengthInBytes); } #if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes) { status_t returnCode; uint8_t flashIndex; returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } returnCode = flash_convert_start_address(&config->ftfxConfig[flashIndex], start); if (returnCode != kStatus_FTFx_Success) { return returnCode; } return FTFx_CMD_ProgramSection(&config->ftfxConfig[flashIndex], start, src, lengthInBytes); } #endif #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD status_t FLASH_ReadResource(flash_config_t *config, uint32_t start, uint8_t *dst, uint32_t lengthInBytes, ftfx_read_resource_opt_t option) { return FTFx_CMD_ReadResource(&config->ftfxConfig[0], start, dst, lengthInBytes, option); } #endif status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, ftfx_margin_value_t margin) { status_t returnCode; uint8_t flashIndex; returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } returnCode = flash_convert_start_address(&config->ftfxConfig[flashIndex], start); if (returnCode != kStatus_FTFx_Success) { return returnCode; } return FTFx_CMD_VerifyErase(&config->ftfxConfig[flashIndex], start, lengthInBytes, margin); } status_t FLASH_VerifyEraseAll(flash_config_t *config, ftfx_margin_value_t margin) { return FTFx_CMD_VerifyEraseAll(&config->ftfxConfig[0], margin); } status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, const uint8_t *expectedData, ftfx_margin_value_t margin, uint32_t *failedAddress, uint32_t *failedData) { status_t returnCode; uint8_t flashIndex; returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } returnCode = flash_convert_start_address(&config->ftfxConfig[flashIndex], start); if (returnCode != kStatus_FTFx_Success) { return returnCode; } return FTFx_CMD_VerifyProgram(&config->ftfxConfig[flashIndex], start, lengthInBytes, expectedData, margin, failedAddress, failedData); } status_t FLASH_GetSecurityState(flash_config_t *config, ftfx_security_state_t *state) { return FTFx_REG_GetSecurityState(&config->ftfxConfig[0], state); } status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey) { return FTFx_CMD_SecurityBypass(&config->ftfxConfig[0], backdoorKey); } #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD status_t FLASH_SetFlexramFunction(flash_config_t *config, ftfx_flexram_func_opt_t option) { return FTFx_CMD_SetFlexramFunction(&config->ftfxConfig[0], option); } #endif #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP status_t FLASH_Swap(flash_config_t *config, uint32_t address, bool isSetEnable) { status_t returnCode; ftfx_swap_state_config_t returnInfo; ftfx_config_t *ftfxConfig; uint8_t flashIndex; returnCode = flash_check_range_to_get_index(config, address, 1, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } ftfxConfig = &config->ftfxConfig[flashIndex]; memset(&returnInfo, 0xFFU, sizeof(returnInfo)); do { returnCode = FTFx_CMD_SwapControl(ftfxConfig, address, kFTFx_SwapControlOptionReportStatus, &returnInfo); if (returnCode != kStatus_FTFx_Success) { return returnCode; } if (!isSetEnable) { if (returnInfo.flashSwapState == kFTFx_SwapStateDisabled) { return kStatus_FTFx_Success; } else if (returnInfo.flashSwapState == kFTFx_SwapStateUninitialized) { /* The swap system changed to the DISABLED state with Program flash block 0 * located at relative flash address 0x0_0000 */ returnCode = FTFx_CMD_SwapControl(ftfxConfig, address, kFTFx_SwapControlOptionDisableSystem, &returnInfo); } else { /* Swap disable should be requested only when swap system is in the uninitialized state */ return kStatus_FTFx_SwapSystemNotInUninitialized; } } else { /* When first swap: the initial swap state is Uninitialized, flash swap inidicator address is unset, * the swap procedure should be Uninitialized -> Update-Erased -> Complete. * After the first swap has been completed, the flash swap inidicator address cannot be modified * unless EraseAllBlocks command is issued, the swap procedure is changed to Update -> Update-Erased -> * Complete. */ switch (returnInfo.flashSwapState) { case kFTFx_SwapStateUninitialized: /* If current swap mode is Uninitialized, Initialize Swap to Initialized/READY state. */ returnCode = FTFx_CMD_SwapControl(ftfxConfig, address, kFTFx_SwapControlOptionIntializeSystem, &returnInfo); break; case kFTFx_SwapStateReady: /* Validate whether the address provided to the swap system is matched to * swap indicator address in the IFR */ returnCode = flash_validate_swap_indicator_address(ftfxConfig, address); if (returnCode == kStatus_FTFx_Success) { /* If current swap mode is Initialized/Ready, Initialize Swap to UPDATE state. */ returnCode = FTFx_CMD_SwapControl(ftfxConfig, address, kFTFx_SwapControlOptionSetInUpdateState, &returnInfo); } break; case kFTFx_SwapStateUpdate: /* If current swap mode is Update, Erase indicator sector in non active block * to proceed swap system to update-erased state */ returnCode = FLASH_Erase(config, address + (ftfxConfig->flashDesc.totalSize >> 1), ftfxConfig->opsConfig.addrAligment.sectorCmd, kFTFx_ApiEraseKey); break; case kFTFx_SwapStateUpdateErased: /* If current swap mode is Update or Update-Erased, progress Swap to COMPLETE State */ returnCode = FTFx_CMD_SwapControl(ftfxConfig, address, kFTFx_SwapControlOptionSetInCompleteState, &returnInfo); break; case kFTFx_SwapStateComplete: break; case kFTFx_SwapStateDisabled: /* When swap system is in disabled state, We need to clear swap system back to uninitialized * by issuing EraseAllBlocks command */ returnCode = kStatus_FTFx_SwapSystemNotInUninitialized; break; default: returnCode = kStatus_FTFx_InvalidArgument; break; } } if (returnCode != kStatus_FTFx_Success) { break; } } while (!((kFTFx_SwapStateComplete == returnInfo.flashSwapState) && isSetEnable)); return returnCode; } #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */ status_t FLASH_IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_prot_state_t *protection_state) { status_t returnCode; ftfx_config_t *ftfxConfig; uint8_t flashIndex; if (protection_state == NULL) { return kStatus_FTFx_InvalidArgument; } returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } ftfxConfig = &config->ftfxConfig[flashIndex]; if (ftfxConfig->flashDesc.feature.hasProtControl) { uint32_t endAddress; /* end address for protection check */ uint32_t regionCheckedCounter; /* increments each time the flash address was checked for * protection status */ uint32_t regionCounter; /* incrementing variable used to increment through the flash * protection regions */ uint32_t protectStatusCounter; /* increments each time a flash region was detected as protected */ uint8_t flashRegionProtectStatus[MAX_FLASH_PROT_REGION_COUNT]; /* array of the protection * status for each * protection region */ uint32_t flashRegionAddress[MAX_FLASH_PROT_REGION_COUNT + 1]; /* array of the start addresses for each flash * protection region. Note this is REGION_COUNT+1 * due to requiring the next start address after * the end of flash for loop-check purposes below */ bool isBreakNeeded = false; /* calculating Flash end address */ endAddress = start + lengthInBytes; /* populate the flashRegionAddress array with the start address of each flash region */ regionCounter = 0; /* make sure regionCounter is initialized to 0 first */ /* populate up to 33rd element of array, this is the next address after end of flash array */ while (regionCounter <= ftfxConfig->flashDesc.protectRegionMem.count) { flashRegionAddress[regionCounter] = ftfxConfig->flashDesc.protectRegionMem.base + ftfxConfig->flashDesc.protectRegionMem.size * regionCounter; regionCounter++; } /* populate flashRegionProtectStatus array with status information * Protection status for each region is stored in the FPROT[3:0] registers * Each bit represents one region of flash * 4 registers * 8-bits-per-register = 32-bits (32-regions) * The convention is: * FPROT3[bit 0] is the first protection region (start of flash memory) * FPROT0[bit 7] is the last protection region (end of flash memory) * regionCounter is used to determine which FPROT[3:0] register to check for protection status * Note: FPROT=1 means NOT protected, FPROT=0 means protected */ regionCounter = 0; /* make sure regionCounter is initialized to 0 first */ while (regionCounter < ftfxConfig->flashDesc.protectRegionMem.count) { if ((ftfxConfig->flashDesc.index == 0) || (!ftfxConfig->flashDesc.feature.hasIndProtReg)) { /* Note: So far protection region count may be 16/20/24/32/64 */ if (regionCounter < 8) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL3_REG >> regionCounter) & (0x01u); } else if (regionCounter < 16) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL2_REG >> (regionCounter - 8)) & (0x01u); } #if defined(MAX_FLASH_PROT_REGION_COUNT) && (MAX_FLASH_PROT_REGION_COUNT > 16) #if (MAX_FLASH_PROT_REGION_COUNT == 20) else if (regionCounter < 20) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u); } #else else if (regionCounter < 24) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u); } #endif /*(MAX_FLASH_PROT_REGION_COUNT == 20)*/ #endif #if defined(MAX_FLASH_PROT_REGION_COUNT) && (MAX_FLASH_PROT_REGION_COUNT > 24) else if (regionCounter < 32) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL0_REG >> (regionCounter - 24)) & (0x01u); } #endif #if defined(MAX_FLASH_PROT_REGION_COUNT) && (MAX_FLASH_PROT_REGION_COUNT == 64) else if (regionCounter < 40) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH3_REG >> (regionCounter - 32)) & (0x01u); } else if (regionCounter < 48) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH2_REG >> (regionCounter - 40)) & (0x01u); } else if (regionCounter < 56) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH1_REG >> (regionCounter - 48)) & (0x01u); } else if (regionCounter < 64) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH0_REG >> (regionCounter - 56)) & (0x01u); } #endif else { isBreakNeeded = true; } regionCounter++; } else if ((ftfxConfig->flashDesc.index == 1) && ftfxConfig->flashDesc.feature.hasIndProtReg) { /* Note: So far protection region count may be 8/16 */ if (regionCounter < 8) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSL_REG >> regionCounter) & (0x01u); } else if (regionCounter < 16) { flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSH_REG >> (regionCounter - 8)) & (0x01u); } else { isBreakNeeded = true; } regionCounter++; } else {} if (isBreakNeeded) { break; } } /* loop through the flash regions and check * desired flash address range for protection status * loop stops when it is detected that start has exceeded the endAddress */ regionCounter = 0; /* make sure regionCounter is initialized to 0 first */ regionCheckedCounter = 0; protectStatusCounter = 0; /* make sure protectStatusCounter is initialized to 0 first */ while (start < endAddress) { /* check to see if the address falls within this protection region * Note that if the entire flash is to be checked, the last protection * region checked would consist of the last protection start address and * the start address following the end of flash */ if ((start >= flashRegionAddress[regionCounter]) && (start < flashRegionAddress[regionCounter + 1])) { /* increment regionCheckedCounter to indicate this region was checked */ regionCheckedCounter++; /* check the protection status of this region * Note: FPROT=1 means NOT protected, FPROT=0 means protected */ if (!flashRegionProtectStatus[regionCounter]) { /* increment protectStatusCounter to indicate this region is protected */ protectStatusCounter++; } start += ftfxConfig->flashDesc.protectRegionMem.size; /* increment to an address within the next region */ } regionCounter++; /* increment regionCounter to check for the next flash protection region */ } /* if protectStatusCounter == 0, then no region of the desired flash region is protected */ if (protectStatusCounter == 0) { *protection_state = kFLASH_ProtectionStateUnprotected; } /* if protectStatusCounter == regionCheckedCounter, then each region checked was protected */ else if (protectStatusCounter == regionCheckedCounter) { *protection_state = kFLASH_ProtectionStateProtected; } /* if protectStatusCounter != regionCheckedCounter, then protection status is mixed * In other words, some regions are protected while others are unprotected */ else { *protection_state = kFLASH_ProtectionStateMixed; } } else { *protection_state = kFLASH_ProtectionStateUnprotected; } return kStatus_FTFx_Success; } status_t FLASH_IsExecuteOnly(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_xacc_state_t *access_state) { status_t returnCode; ftfx_config_t *ftfxConfig; uint8_t flashIndex; if (access_state == NULL) { return kStatus_FTFx_InvalidArgument; } returnCode = flash_check_range_to_get_index(config, start, lengthInBytes, &flashIndex); if (returnCode != kStatus_FTFx_Success) { return returnCode; } ftfxConfig = &config->ftfxConfig[flashIndex]; if (ftfxConfig->flashDesc.feature.hasXaccControl) { #if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL uint32_t executeOnlySegmentCounter = 0; /* calculating end address */ uint32_t endAddress = start + lengthInBytes; /* Aligning start address and end address */ uint32_t alignedStartAddress = ALIGN_DOWN(start, ftfxConfig->flashDesc.accessSegmentMem.size); uint32_t alignedEndAddress = ALIGN_UP(endAddress, ftfxConfig->flashDesc.accessSegmentMem.size); uint32_t segmentIndex = 0; uint32_t maxSupportedExecuteOnlySegmentCount = (alignedEndAddress - alignedStartAddress) / ftfxConfig->flashDesc.accessSegmentMem.size; while (start < endAddress) { uint32_t xacc = 0; bool isInvalidSegmentIndex = false; segmentIndex = (start - ftfxConfig->flashDesc.accessSegmentMem.base) / ftfxConfig->flashDesc.accessSegmentMem.size; if ((ftfxConfig->flashDesc.index == 0) || (!ftfxConfig->flashDesc.feature.hasIndXaccReg)) { /* For primary flash, The eight XACC registers allow up to 64 restricted segments of equal memory size. */ if (segmentIndex < 32) { xacc = *(const volatile uint32_t *)&FTFx_XACCL3_REG; } else if (segmentIndex < ftfxConfig->flashDesc.accessSegmentMem.count) { xacc = *(const volatile uint32_t *)&FTFx_XACCH3_REG; segmentIndex -= 32; } else { isInvalidSegmentIndex = true; } } #if FTFx_DRIVER_HAS_FLASH1_SUPPORT else if ((ftfxConfig->flashDesc.index == 1) && ftfxConfig->flashDesc.feature.hasIndXaccReg) { /* For secondary flash, The two XACCS registers allow up to 16 restricted segments of equal memory size. */ if (segmentIndex < 8) { xacc = *(const volatile uint8_t *)&FTFx_XACCSL_REG; } else if (segmentIndex < ftfxConfig->flashDesc.accessSegmentMem.count) { xacc = *(const volatile uint8_t *)&FTFx_XACCSH_REG; segmentIndex -= 8; } else { isInvalidSegmentIndex = true; } } #endif else {} if (isInvalidSegmentIndex) { break; } /* Determine if this address range is in a execute-only protection flash segment. */ if ((~xacc) & (1u << segmentIndex)) { executeOnlySegmentCounter++; } start += ftfxConfig->flashDesc.accessSegmentMem.size; } if (executeOnlySegmentCounter < 1u) { *access_state = kFLASH_AccessStateUnLimited; } else if (executeOnlySegmentCounter < maxSupportedExecuteOnlySegmentCount) { *access_state = kFLASH_AccessStateMixed; } else { *access_state = kFLASH_AccessStateExecuteOnly; } #endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ } else { *access_state = kFLASH_AccessStateUnLimited; } return kStatus_FTFx_Success; } status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus) { if (config == NULL) { return kStatus_FTFx_InvalidArgument; } if (config->ftfxConfig[0].flashDesc.feature.hasProtControl) { if (config->ftfxConfig[0].flashDesc.feature.ProtRegBits >= 32) { *kFPROTL = protectStatus->protl; if (protectStatus->protl != *kFPROTL) { return kStatus_FTFx_CommandFailure; } } if (config->ftfxConfig[0].flashDesc.feature.ProtRegBits == 64) { *kFPROTH = protectStatus->proth; if (protectStatus->proth != *kFPROTH) { return kStatus_FTFx_CommandFailure; } } } #if FTFx_DRIVER_HAS_FLASH1_SUPPORT else if (config->ftfxConfig[1].flashDesc.feature.hasProtControl && \ config->ftfxConfig[1].flashDesc.feature.hasIndProtReg) { if (config->ftfxConfig[1].flashDesc.feature.ProtRegBits == 16) { *kFPROTSL = protectStatus->protsl; if (protectStatus->protsl != *kFPROTSL) { return kStatus_FTFx_CommandFailure; } *kFPROTSH = protectStatus->protsh; if (protectStatus->protsh != *kFPROTSH) { return kStatus_FTFx_CommandFailure; } } } #endif return kStatus_FTFx_Success; } status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus) { if ((config == NULL) || (protectStatus == NULL)) { return kStatus_FTFx_InvalidArgument; } if (config->ftfxConfig[0].flashDesc.feature.hasProtControl) { if (config->ftfxConfig[0].flashDesc.feature.ProtRegBits >= 32) { protectStatus->protl = *kFPROTL; } if (config->ftfxConfig[0].flashDesc.feature.ProtRegBits == 64) { protectStatus->proth = *kFPROTH; } } #if FTFx_DRIVER_HAS_FLASH1_SUPPORT else if (config->ftfxConfig[1].flashDesc.feature.hasProtControl && \ config->ftfxConfig[1].flashDesc.feature.hasIndProtReg) { if (config->ftfxConfig[0].flashDesc.feature.ProtRegBits == 16) { protectStatus->protsl = *kFPROTSL; protectStatus->protsh = *kFPROTSH; } } #endif return kStatus_FTFx_Success; } status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value) { if ((config == NULL) || (value == NULL)) { return kStatus_FTFx_InvalidArgument; } switch (whichProperty) { case kFLASH_PropertyPflash0SectorSize: *value = config->ftfxConfig[0].flashDesc.sectorSize; break; case kFLASH_PropertyPflash0TotalSize: *value = config->ftfxConfig[0].flashDesc.totalSize; break; case kFLASH_PropertyPflash0BlockSize: *value = config->ftfxConfig[0].flashDesc.totalSize / config->ftfxConfig[0].flashDesc.blockCount; break; case kFLASH_PropertyPflash0BlockCount: *value = config->ftfxConfig[0].flashDesc.blockCount; break; case kFLASH_PropertyPflash0BlockBaseAddr: *value = config->ftfxConfig[0].flashDesc.blockBase; break; case kFLASH_PropertyPflash0FacSupport: *value = (uint32_t)config->ftfxConfig[0].flashDesc.feature.hasXaccControl; break; case kFLASH_PropertyPflash0AccessSegmentSize: *value = config->ftfxConfig[0].flashDesc.accessSegmentMem.size; break; case kFLASH_PropertyPflash0AccessSegmentCount: *value = config->ftfxConfig[0].flashDesc.accessSegmentMem.count; break; #if FTFx_DRIVER_HAS_FLASH1_SUPPORT case kFLASH_PropertyPflash1SectorSize: *value = config->ftfxConfig[1].flashDesc.sectorSize; break; case kFLASH_PropertyPflash1TotalSize: *value = config->ftfxConfig[1].flashDesc.totalSize; break; case kFLASH_PropertyPflash1BlockSize: *value = config->ftfxConfig[1].flashDesc.totalSize / config->ftfxConfig[1].flashDesc.blockCount; break; case kFLASH_PropertyPflash1BlockCount: *value = config->ftfxConfig[1].flashDesc.blockCount; break; case kFLASH_PropertyPflash1BlockBaseAddr: *value = config->ftfxConfig[1].flashDesc.blockBase; break; case kFLASH_PropertyPflash1FacSupport: *value = (uint32_t)config->ftfxConfig[1].flashDesc.feature.hasXaccControl; break; case kFLASH_PropertyPflash1AccessSegmentSize: *value = config->ftfxConfig[1].flashDesc.accessSegmentMem.size; break; case kFLASH_PropertyPflash1AccessSegmentCount: *value = config->ftfxConfig[1].flashDesc.accessSegmentMem.count; break; #endif case kFLASH_PropertyFlexRamBlockBaseAddr: *value = config->ftfxConfig[0].flexramBlockBase; break; case kFLASH_PropertyFlexRamTotalSize: *value = config->ftfxConfig[0].flexramTotalSize; break; default: /* catch inputs that are not recognized */ return kStatus_FTFx_UnknownProperty; } return kStatus_FTFx_Success; } static void flash_init_features(ftfx_config_t *config) { if (config->flashDesc.index == 0) { config->flashDesc.feature.isIndBlock = 1; config->flashDesc.feature.hasIndPfsizeReg = 1; config->flashDesc.feature.hasIndProtReg = 1; config->flashDesc.feature.hasIndXaccReg = 1; } #if FTFx_DRIVER_HAS_FLASH1_SUPPORT else if (config->flashDesc.index == 1) { config->flashDesc.feature.isIndBlock = FTFx_FLASH1_IS_INDEPENDENT_BLOCK; config->flashDesc.feature.hasIndPfsizeReg = config->flashDesc.feature.isIndBlock; config->flashDesc.feature.hasIndProtReg = FTFx_FLASH1_HAS_INT_PROT_REG; config->flashDesc.feature.hasIndXaccReg = FTFx_FLASH1_HAS_INT_XACC_REG; } #endif config->flashDesc.feature.hasProtControl = 1; config->flashDesc.feature.hasXaccControl = FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL; } static uint32_t flash_calculate_mem_size(uint32_t pflashBlockCount, uint32_t pflashBlockSize, uint32_t pfsizeMask, uint32_t pfsizeShift) { uint8_t pfsize; uint32_t flashDensity; /* PFSIZE=0xf means that on customer parts the IFR was not correctly programmed. * We just use the pre-defined flash size in feature file here to support pre-production parts */ pfsize = (SIM_FCFG1_REG & pfsizeMask) >> pfsizeShift; if (pfsize == 0xf) { flashDensity = pflashBlockCount * pflashBlockSize; } else { flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10; } return flashDensity; } static uint32_t flash_calculate_prot_segment_size(uint32_t flashSize, uint32_t segmentCount) { uint32_t segmentSize; /* Calculate the size of the flash protection region * If the flash density is > 32KB, then protection region is 1/32 of total flash density * Else if flash density is < 32KB, then flash protection region is set to 1KB */ if (flashSize > segmentCount * kFTFx_MinProtectBlockSize) { segmentSize = flashSize / segmentCount; } else { segmentSize = kFTFx_MinProtectBlockSize; } return segmentSize; } static status_t flash_check_range_to_get_index(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint8_t *flashIndex) { if (config == NULL) { return kStatus_FTFx_InvalidArgument; } /* Validates the range of the given address */ for (uint8_t index = 0; index < FTFx_FLASH_COUNT; index++) { if ((start >= config->ftfxConfig[index].flashDesc.blockBase) && ((start + lengthInBytes) <= (config->ftfxConfig[index].flashDesc.blockBase + config->ftfxConfig[index].flashDesc.totalSize))) { *flashIndex = config->ftfxConfig[index].flashDesc.index; return kStatus_FTFx_Success; } } return kStatus_FTFx_AddressError; } static status_t flash_convert_start_address(ftfx_config_t *config, uint32_t start) { if (config == NULL) { return kStatus_FTFx_InvalidArgument; } if (config->flashDesc.index && config->flashDesc.feature.isIndBlock) { /* When required by the command, address bit 23 selects between main flash memory * (=0) and secondary flash memory (=1).*/ config->opsConfig.convertedAddress = start - config->flashDesc.blockBase + 0x800000U; } else { config->opsConfig.convertedAddress = start; } return kStatus_FTFx_Success; } #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP /*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/ static status_t flash_validate_swap_indicator_address(ftfx_config_t *config, uint32_t address) { status_t returnCode; struct _flash_swap_ifr_field_config { uint16_t swapIndicatorAddress; /*!< A Swap indicator address field.*/ uint16_t swapEnableWord; /*!< A Swap enable word field.*/ uint8_t reserved0[4]; /*!< A reserved field.*/ uint8_t reserved1[2]; /*!< A reserved field.*/ uint16_t swapDisableWord; /*!< A Swap disable word field.*/ uint8_t reserved2[4]; /*!< A reserved field.*/ } flashSwapIfrFieldData; uint32_t swapIndicatorAddress; #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD returnCode = FTFx_CMD_ReadResource(config, config->ifrDesc.resRange.pflashSwapIfrStart, (uint8_t *)&flashSwapIfrFieldData, sizeof(flashSwapIfrFieldData), kFTFx_ResourceOptionFlashIfr); if (returnCode != kStatus_FTFx_Success) { return returnCode; } #else { /* From RM, the actual info are stored in FCCOB6,7 */ uint32_t returnValue[2]; returnCode = FTFx_CMD_ReadOnce(config, kFLASH_RecordIndexSwapAddr, (uint8_t *)returnValue, 4); if (returnCode != kStatus_FTFx_Success) { return returnCode; } flashSwapIfrFieldData.swapIndicatorAddress = (uint16_t)returnValue[0]; returnCode = FTFx_CMD_ReadOnce(config, kFLASH_RecordIndexSwapEnable, (uint8_t *)returnValue, 4); if (returnCode != kStatus_FTFx_Success) { return returnCode; } flashSwapIfrFieldData.swapEnableWord = (uint16_t)returnValue[0]; returnCode = FTFx_CMD_ReadOnce(config, kFLASH_RecordIndexSwapDisable, (uint8_t *)returnValue, 4); if (returnCode != kStatus_FTFx_Success) { return returnCode; } flashSwapIfrFieldData.swapDisableWord = (uint16_t)returnValue[0]; } #endif /* The high bits value of Swap Indicator Address is stored in Program Flash Swap IFR Field, * the low severval bit value of Swap Indicator Address is always 1'b0 */ swapIndicatorAddress = (uint32_t)flashSwapIfrFieldData.swapIndicatorAddress * config->opsConfig.addrAligment.swapCtrlCmd; if (address != swapIndicatorAddress) { return kStatus_FTFx_SwapIndicatorAddressError; } return returnCode; } #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */