/* * The Clear BSD License * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_uart_edma.h" /******************************************************************************* * Definitions ******************************************************************************/ /* Array of UART handle. */ #if (defined(UART5)) #define UART_HANDLE_ARRAY_SIZE 6 #else /* UART5 */ #if (defined(UART4)) #define UART_HANDLE_ARRAY_SIZE 5 #else /* UART4 */ #if (defined(UART3)) #define UART_HANDLE_ARRAY_SIZE 4 #else /* UART3 */ #if (defined(UART2)) #define UART_HANDLE_ARRAY_SIZE 3 #else /* UART2 */ #if (defined(UART1)) #define UART_HANDLE_ARRAY_SIZE 2 #else /* UART1 */ #if (defined(UART0)) #define UART_HANDLE_ARRAY_SIZE 1 #else /* UART0 */ #error No UART instance. #endif /* UART 0 */ #endif /* UART 1 */ #endif /* UART 2 */ #endif /* UART 3 */ #endif /* UART 4 */ #endif /* UART 5 */ /*base, uartPrivateHandle->handle); if (uartPrivateHandle->handle->callback) { uartPrivateHandle->handle->callback(uartPrivateHandle->base, uartPrivateHandle->handle, kStatus_UART_TxIdle, uartPrivateHandle->handle->userData); } } } static void UART_ReceiveEDMACallback(edma_handle_t *handle, void *param, bool transferDone, uint32_t tcds) { assert(param); uart_edma_private_handle_t *uartPrivateHandle = (uart_edma_private_handle_t *)param; /* Avoid warning for unused parameters. */ handle = handle; tcds = tcds; if (transferDone) { /* Disable transfer. */ UART_TransferAbortReceiveEDMA(uartPrivateHandle->base, uartPrivateHandle->handle); if (uartPrivateHandle->handle->callback) { uartPrivateHandle->handle->callback(uartPrivateHandle->base, uartPrivateHandle->handle, kStatus_UART_RxIdle, uartPrivateHandle->handle->userData); } } } void UART_TransferCreateHandleEDMA(UART_Type *base, uart_edma_handle_t *handle, uart_edma_transfer_callback_t callback, void *userData, edma_handle_t *txEdmaHandle, edma_handle_t *rxEdmaHandle) { assert(handle); uint32_t instance = UART_GetInstance(base); s_edmaPrivateHandle[instance].base = base; s_edmaPrivateHandle[instance].handle = handle; memset(handle, 0, sizeof(*handle)); handle->rxState = kUART_RxIdle; handle->txState = kUART_TxIdle; handle->rxEdmaHandle = rxEdmaHandle; handle->txEdmaHandle = txEdmaHandle; handle->callback = callback; handle->userData = userData; #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO /* Note: Take care of the RX FIFO, EDMA request only assert when received bytes equal or more than RX water mark, there is potential issue if RX water mark larger than 1. For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and 5 bytes are received. the last byte will be saved in FIFO but not trigger EDMA transfer because the water mark is 2. */ if (rxEdmaHandle) { base->RWFIFO = 1U; } #endif /* Configure TX. */ if (txEdmaHandle) { EDMA_SetCallback(handle->txEdmaHandle, UART_SendEDMACallback, &s_edmaPrivateHandle[instance]); } /* Configure RX. */ if (rxEdmaHandle) { EDMA_SetCallback(handle->rxEdmaHandle, UART_ReceiveEDMACallback, &s_edmaPrivateHandle[instance]); } } status_t UART_SendEDMA(UART_Type *base, uart_edma_handle_t *handle, uart_transfer_t *xfer) { assert(handle); assert(handle->txEdmaHandle); assert(xfer); assert(xfer->data); assert(xfer->dataSize); edma_transfer_config_t xferConfig; status_t status; /* If previous TX not finished. */ if (kUART_TxBusy == handle->txState) { status = kStatus_UART_TxBusy; } else { handle->txState = kUART_TxBusy; handle->txDataSizeAll = xfer->dataSize; /* Prepare transfer. */ EDMA_PrepareTransfer(&xferConfig, xfer->data, sizeof(uint8_t), (void *)UART_GetDataRegisterAddress(base), sizeof(uint8_t), sizeof(uint8_t), xfer->dataSize, kEDMA_MemoryToPeripheral); /* Store the initially configured eDMA minor byte transfer count into the UART handle */ handle->nbytes = sizeof(uint8_t); /* Submit transfer. */ EDMA_SubmitTransfer(handle->txEdmaHandle, &xferConfig); EDMA_StartTransfer(handle->txEdmaHandle); /* Enable UART TX EDMA. */ UART_EnableTxDMA(base, true); status = kStatus_Success; } return status; } status_t UART_ReceiveEDMA(UART_Type *base, uart_edma_handle_t *handle, uart_transfer_t *xfer) { assert(handle); assert(handle->rxEdmaHandle); assert(xfer); assert(xfer->data); assert(xfer->dataSize); edma_transfer_config_t xferConfig; status_t status; /* If previous RX not finished. */ if (kUART_RxBusy == handle->rxState) { status = kStatus_UART_RxBusy; } else { handle->rxState = kUART_RxBusy; handle->rxDataSizeAll = xfer->dataSize; /* Prepare transfer. */ EDMA_PrepareTransfer(&xferConfig, (void *)UART_GetDataRegisterAddress(base), sizeof(uint8_t), xfer->data, sizeof(uint8_t), sizeof(uint8_t), xfer->dataSize, kEDMA_PeripheralToMemory); /* Store the initially configured eDMA minor byte transfer count into the UART handle */ handle->nbytes = sizeof(uint8_t); /* Submit transfer. */ EDMA_SubmitTransfer(handle->rxEdmaHandle, &xferConfig); EDMA_StartTransfer(handle->rxEdmaHandle); /* Enable UART RX EDMA. */ UART_EnableRxDMA(base, true); status = kStatus_Success; } return status; } void UART_TransferAbortSendEDMA(UART_Type *base, uart_edma_handle_t *handle) { assert(handle); assert(handle->txEdmaHandle); /* Disable UART TX EDMA. */ UART_EnableTxDMA(base, false); /* Stop transfer. */ EDMA_AbortTransfer(handle->txEdmaHandle); handle->txState = kUART_TxIdle; } void UART_TransferAbortReceiveEDMA(UART_Type *base, uart_edma_handle_t *handle) { assert(handle); assert(handle->rxEdmaHandle); /* Disable UART RX EDMA. */ UART_EnableRxDMA(base, false); /* Stop transfer. */ EDMA_AbortTransfer(handle->rxEdmaHandle); handle->rxState = kUART_RxIdle; } status_t UART_TransferGetReceiveCountEDMA(UART_Type *base, uart_edma_handle_t *handle, uint32_t *count) { assert(handle); assert(handle->rxEdmaHandle); assert(count); if (kUART_RxIdle == handle->rxState) { return kStatus_NoTransferInProgress; } *count = handle->rxDataSizeAll - (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->rxEdmaHandle->base, handle->rxEdmaHandle->channel); return kStatus_Success; } status_t UART_TransferGetSendCountEDMA(UART_Type *base, uart_edma_handle_t *handle, uint32_t *count) { assert(handle); assert(handle->txEdmaHandle); assert(count); if (kUART_TxIdle == handle->txState) { return kStatus_NoTransferInProgress; } *count = handle->txDataSizeAll - (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->txEdmaHandle->base, handle->txEdmaHandle->channel); return kStatus_Success; }