{ "cells": [ { "cell_type": "markdown", "id": "afc512ca", "metadata": {}, "source": [ "## Speck Simulation" ] }, { "cell_type": "code", "execution_count": 1, "id": "efb373e4", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as pyplot\n", "import numpy as np\n", "from scipy.stats import pearsonr\n", "import random\n", "from operator import xor\n", "\n", "# Fast implementation of the Hamming weight for 64 bit values\n", "# See book: A Hacker's delight\n", "def popcount(x):\n", " x -= (x >> 1) & 0x5555555555555555\n", " x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333)\n", " x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f\n", " return ((x * 0x0101010101010101) & 0xffffffffffffffff ) >> 56" ] }, { "cell_type": "code", "execution_count": 2, "id": "306edb76", "metadata": {}, "outputs": [], "source": [ "# not sure if the hamming weight model w0rks for Speck" ] }, { "cell_type": "code", "execution_count": 108, "id": "7654d5a2", "metadata": {}, "outputs": [], "source": [ "import math\n", "\n", "NUM_ROUNDS = 22\n", "BLOCK_SIZE = 32\n", "KEY_SIZE = 64\n", "WORD_SIZE = 16\n", "\n", "\n", "# SHIFTs for SPECK\n", "ALPHA = 7\n", "BETA = 2\n", "\n", "mod_mask = (2 ** WORD_SIZE) -1\n", "mod_mask_sub = (2 ** WORD_SIZE)" ] }, { "cell_type": "code", "execution_count": 109, "id": "5c3ade39", "metadata": {}, "outputs": [], "source": [ "def bytesToWords16(b): \n", " return [(b >> (x * WORD_SIZE)) & mod_mask for x in\n", " range(0, math.ceil(KEY_SIZE // WORD_SIZE))]\n", " \n", " " ] }, { "cell_type": "code", "execution_count": 114, "id": "953621aa", "metadata": {}, "outputs": [], "source": [ "'''\n", " The 16bit Speck roundfunction\n", "'''\n", "def ER16(x, y, k):\n", "\n", " rs_x = ((x << (16 - ALPHA)) + (x >> ALPHA)) & mod_mask\n", "\n", " add_sxy = (rs_x + y) & mod_mask\n", "\n", " new_x = k ^ add_sxy\n", "\n", " ls_y = ((y >> (16 - BETA)) + (y << BETA)) & mod_mask\n", "\n", " new_y = new_x ^ ls_y\n", "\n", " return new_x, new_y\n" ] }, { "cell_type": "markdown", "id": "4b7a7d5d", "metadata": {}, "source": [ "## Running the key schedule" ] }, { "cell_type": "code", "execution_count": 115, "id": "15e86ae3", "metadata": {}, "outputs": [], "source": [ "key_schedule = bytesToWords16(key)" ] }, { "cell_type": "code", "execution_count": 116, "id": "93e4fb4a", "metadata": {}, "outputs": [], "source": [ "'''\n", "\n", "The 16 bit python key schedule\n", "\n", "void Speck128256KeySchedule(u64 K[],u64 rk[])\n", "{\n", " u64 i,D=K[3],C=K[2],B=K[1],A=K[0];\n", " for(i=0;i<33;){\n", " rk[i]=A; ER64(B,A,i++);\n", " rk[i]=A; ER64(C,A,i++);\n", " rk[i]=A; ER64(D,A,i++);\n", " }\n", " rk[i]=A;\n", "}\n", "'''\n", "def key_schedule(k):\n", "\n", " D=k[3]\n", " C=k[2]\n", " B=k[1]\n", " A=k[0]\n", " out = []\n", " i = 0\n", " while i < 21:\n", " out.append(A)\n", " B, A = ER16(B, A, i)\n", " i += 1\n", " out.append(A)\n", " C, A = ER16(C, A, i)\n", " i+= 1\n", " out.append(A)\n", " D, A = ER16(D, A, i)\n", " i+= 1\n", " out.append(A)\n", " return out\n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "0061be29", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "e25af6e8", "metadata": {}, "source": [ "## Running tests to verify the output is still fine" ] }, { "cell_type": "code", "execution_count": 117, "id": "1dd758a0", "metadata": {}, "outputs": [], "source": [ "assert key_schedule(l_schedule) == [0x708,0xf32, 0x2bf1,0x8035,0xa48e,0x8482, 0x74ee, 0xf589, 0xb396, 0xb231, 0xdab2, 0x57bc, 0x704e,0x9947,0xe2d2, 0xea6a, 0x4ebe, 0xdd24, 0x6b64, 0x3ab1, 0x1c57, 0x7bde]" ] }, { "cell_type": "code", "execution_count": null, "id": "1553c623", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "5b1da8b8", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "2f090c78", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "3d7a82e9", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "973fb6fa", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }